Refine
H-BRS Bibliography
- yes (6)
Departments, institutes and facilities
Document Type
- Article (5)
- Conference Object (1)
Keywords
- Composites (1)
- Hydroxyl radicals (1)
- ICP OES (1)
- Machine learning (1)
- Mass transport (1)
- Nafion™ (1)
- Oxidation-reduction-potential (1)
- Ozone generator (1)
- PEM electrolysis (1)
- PEM water electrolysis (1)
Monitoring the content of dissolved ozone in purified water is often mandatory to ensure the appropriate levels of disinfection and sanitization. However, quantification bears challenges as colorimetric assays require laborious off-line analysis, while commercially available instruments for electrochemical process analysis are expensive and often lack the possibility for miniaturization and discretionary installation. In this study, potentiometric ionic polymer metal composite (IPMC) sensors for the determination of dissolved ozone in ultrapure water (UPW) systems are presented. Commercially available polymer electrolyte membranes are treated via an impregnation-reduction method to obtain nanostructured platinum layers. By applying 25 different synthesis conditions, layer thicknesses of 2.2 to 12.6 µm are obtained. Supporting radiographic analyses indicate that the platinum concentration of the impregnation solution has the highest influence on the obtained metal loading. The sensor response behavior is explained by a Langmuir pseudo-isotherm model and allows the quantification of dissolved ozone to trace levels of less than 10 µg L−1. Additional statistical evaluations show that the expected Pt loading and radiographic blackening levels can be predicted with high accuracy and significance (R2adj. > 0.90, p < 10−10) solely from given synthesis conditions.
Scratch assays enable the study of the migration process of an injured adherent cell layer in vitro. An apparatus for the reproducible performance of scratch assays and cell harvesting has been developed that meets the requirements for reproducibility in tests as well as easy handling. The entirely autoclavable setup is divided into a sample translation and a scratching system. The translational system is compatible with standard culture dishes and can be modified to adapt to different cell culture systems, while the scratching system can be adjusted according to angle, normal force, shape, and material to adapt to specific questions and demanding substrates. As a result, a fully functional prototype can be presented. This system enables the creation of reproducible and clear scratch edges with a low scratch border roughness within a monolayer of cells. Moreover, the apparatus allows the collection of the migrated cells after scratching for further molecular biological investigations without the need for a second processing step. For comparison, the mechanical properties of manually performed scratch assays are evaluated.
The analysis of used engine oils from industrial engines enables the study of engine wear and oil degradation in order to evaluate the necessity of oil changes. As the matrix composition of an engine oil strongly depends on its intended application, meaningful diagnostic oil analyses bear considerable challenges. Owing to the broad spectrum of available oil matrices, we have evaluated the applicability of using an internal standard and/or preceding sample digestion for elemental analysis of used engine oils via inductively coupled plasma optical emission spectroscopy (ICP OES). Elements originating from both wear particles and additives as well as particle size influence could be clearly recognized by their distinct digestion behaviour. While a precise determination of most wear elements can be achieved in oily matrix, the measurement of additives is performed preferably after sample digestion. Considering a dataset of physicochemical parameters and elemental composition for several hundred used engine oils, we have further investigated the feasibility of predicting the identity and overall condition of an unknown combustion engine using the machine learning system XGBoost. A maximum accuracy of 89.6% in predicting the engine type was achieved, a mean error of less than 10% of the observed timeframe in predicting the oil running time and even less than 4% for the total engine running time, based purely on common oil check data. Furthermore, obstacles and possibilities to improve the performance of the machine learning models were analysed and the factors that enabled the prediction were explored with SHapley Additive exPlanation (SHAP). Our results demonstrate that both the identification of an unknown engine as well as a lifetime assessment can be performed for a first estimation of the actual sample without requiring meticulous documentation.
Operating an ozone-evolving PEM electrolyser in tap water: A case study of water and ion transport
(2022)
While PEM water electrolysis could be a favourable technique for in situ sanitization with ozone, its application is mainly limited to the use of ultrapure water to achieve a sufficient long-time stability. As additional charge carriers influence the occurring transport phenomena, we investigated the impact of different feed water qualities on the performance of a PEM tap water electrolyser for ozone evolution. The permeation of water and the four most abundant cations (Na+, K+, Ca2+, Mg2+) is characterised during stand-by and powered operation at different charge densities to quantify underlying transport mechanisms. Water transport is shown to linearly increase with the applied current (95 ± 2 mmol A−1 h−1) and occurs decoupled from ion permeation. A limitation of ion permeation is given by the transfer of ions in water to the anode/PEM interface. The unstabilized operation of a PEM electrolyser in tap water leads to a pH gradient which promotes the formation of magnesium and calcium carbonates and hydroxides on the cathode surface. The introduction of a novel auxiliary cathode in the anolytic compartment has shown to suppress ion permeation by close to 20%.
The treatment of ultrapure water with electrochemically produced O3 is a common means for disinfection yet leads to the formation of a variety of reactive oxygen species (ROS). The present study draws a comprehensive comparison between three commonly used photometric and fluorometric assays for ROS analysis and quantifies the individual signal responses for dissolved O3, ·OH and H2O2, respectively, to account for cross-sensitivities. By calibrating all combinations of assays and analytes, we developed a quantification procedure to reliably determine the actual ROS composition in ultrapure water environments for different operation conditions of a membrane water electrolyzer with PbO2 anodes down to concentrations of 0.97 μg L−1. While the ·OH formation rate can be described linearly over the observed current density range, substantial O3 evolution is only found for current densities of 0.75 A cm−2 and above (up to 3.7 μmol h−1 for J = 1.25 A cm−2). The formation of H2O2 is only observed when an organic carbon source is introduced into the solution. We further quantify the interference of H2O2 with the reading of the oxidation-reduction potential as a common water parameter and elaborate on its validity to monitor the peroxone process when both H2O2 and O3 are present simultaneously.