Refine
H-BRS Bibliography
- yes (7)
Departments, institutes and facilities
Document Type
- Article (2)
- Conference Object (2)
- Master's Thesis (1)
- Other (1)
- Preprint (1)
Keywords
Modern engineering relies heavily on utilizing computer technologies. This is especially true for thermoplastic manufacturing, such as blow molding. A crucial milestone for digitalization is the continuous integration of data in unified or interoperable systems. While new simulation technologies are constantly developed, data management standards such as STEP fail at integrating them. On the other hand, industrial standards such as ”VMAP” manage to improve interoperability for Small and Medium-sized Enterprises. However, they do not provide Simulation Process and Data Management (SPDM) technologies. For SPDM integration of VMAP data, Ontology-Based Data Access is used to allow continuing the digital thread in custom semantic-based open-source solutions. An ontology of the database format (VMAP) was generated alongside an expandable knowledge graph of data access methods. A Python-based software architecture was developed, automatically using the semantic representations of database format and data access to query data and metadata within the VMAP file. The result is a software architecture template that can be adapted for other data standards and integrated into semantic data management systems. It allows semantic queries on simulation data down to element-wise resolution without integrating the whole model information. The architecture can instantiate a file in a knowledge graph, query a file’s metadatum and, in case it is not yet available, find a semantically represented process that allows the creation and instantiation of the required metadatum. See Figure 1. The results of this thesis can be expected to form a basis for semantic SPDM tools.
Integrating physical simulation data into data ecosystems challenges the compatibility and interoperability of data management tools. Semantic web technologies and relational databases mostly use other data types, such as measurement or manufacturing design data. Standardizing simulation data storage and harmonizing the data structures with other domains is still a challenge, as current standards such as the ISO standard STEP (ISO 10303 ”Standard for the Exchange of Product model data”) fail to bridge the gap between design and simulation data. This challenge requires new methods, such as ontologies, to rethink simulation results integration. This research describes a new software architecture and application methodology based on the industrial standard ”Virtual Material Modelling in Manufacturing” (VMAP). The architecture integrates large quantities of structured simulation data and their analyses into a semantic data structure. It is capable of providing data permeability from the global digital twin level to the detailed numerical values of data entries and even new key indicators in a three-step approach: It represents a file as an instance in a knowledge graph, queries the file’s metadata, and finds a semantically represented process that enables new metadata to be created and instantiated.
Lattice Boltzmann method (LBM) simulations of incompressible flows are nowadays common and well-established. However, for compressible turbulent flows with strong variable density and intrinsic compressibility effects, results are relatively scarce. Only recently, progress was made regarding compressible LBM, usually applied to simple one and two-dimensional test cases due to the increased computational expense. The recently developed semi-Lagrangian lattice Boltzmann method (SLLBM) is capable of simulating two- and three-dimensional viscous compressible flows. This paper presents bounce-back, thermal, inlet, and outlet boundary conditions new to the method and their application to problems including heated or cooled walls, often required for supersonic flow cases. Using these boundary conditions, the SLLBM's capabilities are demonstrated in various test cases, including a supersonic 2D NACA-0012 airfoil, flow around a 3D sphere, and, to the best of our knowledge, for the first time, the 3D simulation of a supersonic turbulent channel flow at a bulk Mach number of Ma=1.5 and a 3D temporal supersonic compressible mixing layer at convective Mach numbers ranging from Ma=0.3 to Ma=1.2. The results show that the compressible SLLBM is able to adequately capture intrinsic and variable density compressibility effects.