### Refine

#### H-BRS Bibliography

- yes (16)

#### Departments, institutes and facilities

#### Document Type

- Article (11)
- Research Data (2)
- Conference Object (1)
- Doctoral Thesis (1)
- Report (1)

#### Keywords

- Crystallinity (3)
- Complex modulus (2)
- Extrusion blow molding (2)
- extrusion blow molding (2)
- Biaxiality (1)
- DMA (1)
- DSC (1)
- Draw ratio (1)
- Dynamic mechanical analysis (1)
- Flow direction (1)

Influence of design of extrusion blow molding (EBM) in terms of extrusion direction set-up and draw ratio as well as process conditions (mold temperature) on storage modulus of high density polyethylene EBM containers was analyzed with dynamic mechanical analysis. All three parameters - mold temperature, flow direction and draw ratio - are statistically significant and lead to relative and absolute evaluation of storage modulus. Furthermore, flow induced changes in crystallinity was analyzed by differential scanning calorimetry. Obtained data on deformation properties can be employed for more sophisticated finite element simulations with the aim to reach more sustainable extrusion blow molding production.

This study presents a microindentation system which allows spatially resolved local as well as bulk viscoelastic material information to be obtained within one instrument. The microindentation method was merged with dynamic mechanical analysis (DMA) for a tungsten cone indenter. Three tungsten cone indenters were investigated: tungsten electrode, tungsten electrode + 2% lanthanum, and tungsten electrode + rare earth elements. Only the tungsten electrode + 2% lanthanum indenter showed the sinusoidal response, and its geometry remained unaffected by the repeated indentations. Complex moduli obtained from dynamic microindentation for high-density polyethylene, polybutylene terephthalate, polycarbonate, and thermoplastic polyurethane are in agreement with the literature. Additionally, by implementing a specially developed x-y-stage, this study showed that dynamic microindentation with a tungsten cone indenter was an adequate method to determine spatially resolved local viscoelastic surface properties.

Characterization methods of pressure sensitive adhesives (PSA) originate from technical bonding and do not cover relevant data for the development and quality assurance of medical applications, where PSA with flexible backing layers are adopted to human skin. In this study, a new method called RheoTack is developed to determine (mechanically and optically) an adhesion and detaching behavior of flexible and transparent PSA based patches. Transdermal therapeutic systems (TTS) consisting of silicone-based PSAs on a flexible and transparent backing layer were tested on a rotational rheometer with an 8 mm plate as a probe rod at retraction speeds of 0.01, 0.1, and 1 mm/s with respect to their adhesion and detaching behavior in terms of force-retraction displacement curves. The curves consist of a compression phase to affirm wetting; a tensile deformation phase intercepting stretching, cavity, and fibril formation; and a failure phase with detaching. Their analysis provides values for stiffness, force, and displacement of the beginning of fibril formation, force and displacement of the beginning of a failure due to fibril breakage and detaching, as well as corresponding activation energies. All these parameters exhibit the pronounced dependency on the retraction speed. The force-retraction displacement curves together with the simultaneous video recordings of the TTS deformation from three different angles (three cameras) provide deeper insight into the deformation processes and allow for interpreting the properties’ characteristics for PSA applications.

Process-induced changes in the morphology of biodegradable polybutylene adipate terephthalate (PBAT) and polylactic acid (PLA) blends modified with various multifunctional chainextending cross-linkers (CECLs) are presented. The morphology of unmodified and modified films produced with blown film extrusion is examined in an extrusion direction (ED) and a transverse direction (TD). While FTIR analysis showed only small peak shifts indicating that the CECLs modify the molecular weight of the PBAT/PLA blend, SEM investigations of the fracture surfaces of blown extrusion films revealed their significant effect on the morphology formed during the processing. Due to the combined shear and elongation deformation during blown film extrusion, rather spherical PLA islands were partly transformed into long fibrils, which tended to decay to chains of elliptical islands if cooled slowly. The CECL introduction into the blend changed the thickness of the PLA fibrils, modified the interface adhesion, and altered the deformation behavior of the PBAT matrix from brittle to ductile. The results proved that CECLs react selectively with PBAT, PLA, and their interface. Furthermore, the reactions of CECLs with PBAT/PLA induced by the processing depended on the deformation directions (ED and TD), thus resulting in further non-uniformities of blown extrusion films.

Introduction of Matrix-Filler Adhesion to Modelling of Elastic Moduli of Particulate Composites
(2022)

Cube in cube elementary volume (EV) concept serves to predict a filler-content dependent Young´s moduli of particle filled composites using moduli of a matrix EM and a filler EF. Paul and Ishai-Cohen derived formulas for composites moduli considering different load transfer boundaries in the EV assuming a complete filler-matrix adhesion. In this paper it is confirmed that their models represent the upper and lower bounds, respectively, with the respect to the experimental data. However, in vast majority of composites a filler-matrix adhesion is not complete. Therefore, an adhesion factor kadh gaining values between 0 and 1 was introduced into Paul´s model to consider the reduced adhesion as the reduction of the filler-matrix contact area for glass beads filled in polar and unpolar thermoplastic matrices as well as elastomer. The evaluation of these composite systems provides reasonable adhesion coefficients of PA66 > PBT > PP > PE-LD >> BR. It was also found that stiffening only occurs if kadh exceeds the minimum value adhesion of root square of E(M) divided by E(F). The determined kadh correspond to scanning electron microscopy observations of the composites fracture surfaces. Additionally, finite element analysis of the cubic and hexagonal arrangements of the EV show that the stress distributions are different, but they affect the calculated moduli only for the filler volume contents exceeding 20 %. The introduction of the filler-matrix adhesion provides more reliable predictions of Young´s moduli of particulate composites.

The cube in cube approach was used by Paul and Ishai-Cohen to model and derive formulas for filler content dependent Young's moduli of particle filled composites assuming perfect filler matrix adhesion. Their formulas were chosen because of their simplicity, and recalculated using an elementary volume approach which transforms spherical inclusions to cubic inclusions. The EV approach led to expression of the composites moduli that allows introducing an adhesion factor kadh ranging from 0 and 1 to take into account reduced filler matrix adhesion. This adhesion factor scales the edge length of the cubic inclusions, thus reducing the stress transfer area between matrix and filler. Fitting the experimental data with the modified Paul model provides reasonable kadh for PA66, PBT, PP, PE-LD and BR which are in line with their surface energies. Further analysis showed that stiffening only occurs if kadh exceeds [Formula: see text] and depends on the ratio of matrix modulus and filler modulus. The modified model allows for a quick calculation of any particle filled composites for known matrix modulus EM, filler modulus EF, filler volume content vF and adhesion factor kadh. Thus, finite element analysis (FEA) simulations of any particle filled polymer parts as well as materials selection are significantly eased. FEA of cubic and hexagonal EV arrangements show that stress distributions within the EV exhibit more shear stresses if one deviates from the cubic arrangement. At high filler contents the assumption that the property of the EV is representative for the whole composite, holds only for filler volume contents up to 15 or 20% (corresponding to 30 to 40 weight %). Thus, for vast majority of commercially available particulate composites, the modified model can be applied. Furthermore, this indicates that the cube in cube approach reaches two limits: (i) the occurrence of increasing shear stresses at filler contents above 20% due to deviations of EV arrangements or spatial filler distribution from cubic arrangements (singular), and (ii) increasing interaction between particles with the formation of particle network within the matrix violating the EV assumption of their homogeneous dispersion.

The cube in cube approach was used by Paul and Ishai-Cohen to model and derive formulas for filler content dependent Young´s moduli of particle filled composites assuming perfect filler matrix adhesion. Their formulas were chosen because of their simplicity, recalculated using an elementary volume approach which transforms spherical inclusions to cubic inclusions. The EV approach led to expression for the composites moduli that allow for introducing an adhesion factor kadh ranging from 0 and 1 to take into account none perfect reduced filler matrix adhesion. This adhesion factor scales the edge length of the cubic inclusions, thus, reducing the stress transfer area between matrix and filler. Fitting the experimental data with the modified Paul model provides reasonable kadh for PA66, PBT, PP, PE-LD and BR which are in line with their surface energies. Further analysis showed that stiffening only occurs if kadh exceeds <span class="math-tex">\( { \ \sqrt{E^M/E^F} \ }\) and depends on the ratio of matrix modulus and filler modulus. The modified model allows for a quick calculation of any particle filled composites for known matrix modulus EM, filler modulus EF, filler volume content vF and adhesion factor kadh. Thus, finite element analysis (FEA) simulations of any particle filled polymer parts as well as materials selection are significantly eased. FEA of cubic and hexagonal EV arrangements show that stress distributions within the EV exhibit more shear stresses if one deviates from the cubic arrangement. At high filler contents the assumption that the property of the EV is representative for the whole composite, holds only for filler volume contents up to 15 or 20 % (corresponding to 30 to 40 weight %). Thus, for vast majority of commercially available particulate composites, the modified model can be applied. Furthermore, this indicates that the cube in cube approach reaches two limits: i) the occurrence of increasing shear stresses at filler contents above 20 % due to deviations of EV arrangements or spatial filler distribution from cubic arrangements (singular), and ii) increasing interaction between particles with the formation of particle network within the matrix violating the EV assumption of their homogeneous dispersion.

This study investigates the effects of four multifunctional chain-extending cross-linkers (CECL) on the processability, mechanical performance, and structure of polybutylene adipate terephthalate (PBAT) and polylactic acid (PLA) blends produced using film blowing technology. The newly developed reference compound (M·VERA® B5029) and the CECL modified blends are characterized with respect to the initial properties and the corresponding properties after aging at 50 °C for 1 and 2 months. The tensile strength, seal strength, and melt volume rate (MVR) are markedly changed after thermal aging, whereas the storage modulus, elongation at the break, and tear resistance remain constant. The degradation of the polymer chains and crosslinking with increased and decreased MVR, respectively, is examined thoroughly with differential scanning calorimetry (DSC), with the results indicating that the CECL-modified blends do not generally endure thermo-oxidation over time. Further, DSC measurements of 25 µm and 100 µm films reveal that film blowing pronouncedly changes the structures of the compounds. These findings are also confirmed by dynamic mechanical analysis, with the conclusion that tris(2,4-di-tert-butylphenyl)phosphite barely affects the glass transition temperature, while with the other changes in CECL are seen. Cross-linking is found for aromatic polycarbodiimide and poly(4,4-dicyclohexylmethanecarbodiimide) CECL after melting of granules and films, although overall the most synergetic effect of the CECL is shown by 1,3-phenylenebisoxazoline.

Modeling of Creep Behavior of Particulate Composites with Focus on Interfacial Adhesion Effect
(2022)

Evaluation of creep compliance of particulate composites using empirical models always provides parameters depending on initial stress and material composition. The effort spent to connect model parameters with physical properties has not resulted in success yet. Further, during the creep, delamination between matrix and filler may occur depending on time and initial stress, reducing an interface adhesion and load transfer to filler particles. In this paper, the creep compliance curves of glass beads reinforced poly(butylene terephthalate) composites were fitted with Burgers and Findley models providing different sets of time-dependent model parameters for each initial stress. Despite the finding that the Findley model performs well in a primary creep, the Burgers model is more suitable if secondary creep comes into play; they allow only for a qualitative prediction of creep behavior because the interface adhesion and its time dependency is an implicit, hidden parameter. As Young’s modulus is a parameter of these models (and the majority of other creep models), it was selected to be introduced as a filler content-dependent parameter with the help of the cube in cube elementary volume approach of Paul. The analysis led to the time-dependent creep compliance that depends only on the time-dependent creep of the matrix and the normalized particle distance (or the filler volume content), and it allowed accounting for the adhesion effect. Comparison with the experimental data confirmed that the elementary volume-based creep compliance function can be used to predict the realistic creep behavior of particulate composites.

Process-dependent thermo-mechanical viscoelastic properties and the corresponding morphology of HDPE extrusion blow molded (EBM) parts were investigated. Evaluation of bulk data showed that flow direction, draw ratio, and mold temperature influence the viscoelastic behavior significantly in certain temperature ranges. Flow induced orientations due to higher draw ratio and higher mold temperature lead to higher crystallinities. To determine the local viscoelastic properties, a new microindentation system was developed by merging indentation with dynamic mechanical analysis. The local process-structure-property relationship of EBM parts showed that the cross-sectional temperature distribution is clearly reflected by local crystallinities and local complex moduli. Additionally, a model to calculate three-dimensional anisotropic coefficients of thermal expansion as a function of the process dependent crystallinity was developed based on an elementary volume unit cell with stacked layers of amorphous phase and crystalline lamellae. Good agreement of the predicted thermal expansion coefficients with measured ones was found up to a temperature of 70 °C.