Refine
H-BRS Bibliography
- yes (5)
Departments, institutes and facilities
Document Type
- Conference Object (3)
- Preprint (1)
- Report (1)
Language
- English (5)
Keywords
- CyberGlove (1)
- Hand Tracking (1)
- Motion Capture (1)
- Musical Performance (1)
- data glove (1)
- database (1)
- grasp motions (1)
- grasping (1)
- interaction (1)
- motion capture (1)
We introduce canonical weight normalization for convolutional neural networks. Inspired by the canonical tensor decomposition, we express the weight tensors in so-called canonical networks as scaled sums of outer vector products. In particular, we train network weights in the decomposed form, where scale weights are optimized separately for each mode. Additionally, similarly to weight normalization, we include a global scaling parameter. We study the initialization of the canonical form by running the power method and by drawing randomly from Gaussian or uniform distributions. Our results indicate that we can replace the power method with cheaper initializations drawn from standard distributions. The canonical re-parametrization leads to competitive normalization performance on the MNIST, CIFAR10, and SVHN data sets. Moreover, the formulation simplifies network compression. Once training has converged, the canonical form allows convenient model-compression by truncating the parameter sums.
The work at hand outlines a recording setup for capturing hand and finger movements of musicians. The focus is on a series of baseline experiments on the detectability of coloured markers under different lighting conditions. With the goal of capturing and recording hand and finger movements of musicians in mind, requirements for such a system and existing approaches are analysed and compared. The results of the experiments and the analysis of related work show that the envisioned setup is suited for the expected scenario.
Motion capture, often abbreviated mocap, generally aims at recording any kind of motion -- be it from a person or an object -- and to transform it to a computer-readable format. Especially the data recorded from (professional and non-professional) human actors are typically used for analysis in e.g. medicine, sport sciences, or biomechanics for evaluation of human motion across various factors. Motion capture is also widely used in the entertainment industry: In video games and films realistic motion sequences and animations are generated through data-driven motion synthesis based on recorded motion (capture) data.
Although the amount of publicly available full-body-motion capture data is growing, the research community still lacks a comparable corpus of specialty motion data such as, e.g. prehensile movements for everyday actions. On the one hand, such data can be used to enrich (hand-over animation) full-body motion capture data - usually captured without hand motion data due to the drastic dimensional difference in articulation detail. On the other hand, it provides means to classify and analyse prehensile movements with or without respect to the concrete object manipulated and to transfer the acquired knowledge to other fields of research (e.g. from 'pure' motion analysis to robotics or biomechanics).
Therefore, the objective of this motion capture database is to provide well-documented, free motion capture data for research purposes.
The presented database GraspDB14 in sum contains over 2000 prehensile movements of ten different non-professional actors interacting with 15 different objects. Each grasp was realised five times by each actor. The motions are systematically named containing an (anonymous) identifier for each actor as well as one for the object grasped or interacted with.
The data were recorded as joint angles (and raw 8-bit sensor data) which can be transformed into positional 3D data (3D trajectories of each joint).
In this document, we provide a detailed description on the GraspDB14-database as well as on its creation (for reproducibility).
Chapter 2 gives a brief overview of motion capture techniques, freely available motion capture databases for both, full body motions and hand motions, and a short section on how such data is made useful and re-used. Chapter 3 describes the database recording process and details the recording setup and the recorded scenarios. It includes a list of objects and performed types of interaction. Chapter 4 covers used file formats, contents, and naming patterns. We provide various tools for parsing, conversion, and visualisation of the recorded motion sequences and document their usage in chapter 5.