Refine
H-BRS Bibliography
- yes (10)
Departments, institutes and facilities
Document Type
- Article (8)
- Conference Object (2)
Keywords
- Chemometrics (3)
- Classification (2)
- Discriminant analysis (2)
- Raman spectroscopy (2)
- Raman-microspectroscopy (2)
- SERS (2)
- classification (2)
- discriminant analysis (2)
- food-related bacteria (2)
- stress response (2)
Hydrophilic surface-enhanced Raman spectroscopy (SERS) substrates were prepared by a combination of TiO2-coatings of aluminium plates through a direct titanium tetraisopropoxide (TTIP) coating and drop coated by synthesised gold nanoparticles (AuNPs). Differences between the wettability of the untreated substrates, the slowly dried Ti(OH)4 substrates and calcinated as well as plasma treated TiO2 substrates were analysed by water contact angle (WCA) measurements. The hydrophilic behaviour of the developed substrates helped to improve the distribution of the AuNPs, which reflects in overall higher lateral SERS enhancement. Surface enhancement of the substrates was tested with target molecule rhodamine 6G (R6G) and a fibre-coupled 638 nm Raman spectrometer. Additionally, the morphology of the substrates was characterised using scanning electron microscopy (SEM) and Raman microscopy. The studies showed a reduced influence of the coffee ring effect on the particle distribution, resulting in a more broadly distributed edge region, which increased the spatial reproducibility of the measured SERS signal in the surface-enhanced Raman mapping measurements on mm scale.
Discrimination of Stressed and Non-Stressed Food-Related Bacteria Using Raman-Microspectroscopy
(2022)
As the identification of microorganisms becomes more significant in industry, so does the utilization of microspectroscopy and the development of effective chemometric models for data analysis and classification. Since only microorganisms cultivated under laboratory conditions can be identified, but they are exposed to a variety of stress factors, such as temperature differences, there is a demand for a method that can take these stress factors and the associated reactions of the bacteria into account. Therefore, bacterial stress reactions to lifetime conditions (regular treatment, 25 °C, HCl, 2-propanol, NaOH) and sampling conditions (cold sampling, desiccation, heat drying) were induced to explore the effects on Raman spectra in order to improve the chemometric models. As a result, in this study nine food-relevant bacteria were exposed to seven stress conditions in addition to routine cultivation as a control. Spectral alterations in lipids, polysaccharides, nucleic acids, and proteins were observed when compared to normal growth circumstances without stresses. Regardless of the involvement of several stress factors and storage times, a model for differentiating the analyzed microorganisms from genus down to strain level was developed. Classification of the independent training dataset at genus and species level for Escherichia coli and at strain level for the other food relevant microorganisms showed a classification rate of 97.6%.
In this work, the surface reactions of the homemade explosive triacetone triperoxide on tungsten oxide (WO3) sensor surfaces are studied to obtain detailed information about the chemical reactions taking place. Semiconductor gas sensors based on WO3 nanopowders are therefore produced and characterized by scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. To analyze the reaction mechanisms at the sensor surface, the sensor is monitored online under operation conditions using Raman spectroscopy, which allows to identify the temperature-dependent sensor reactions. By combining information from the Raman spectra with data on the changing resistivity of the underlying semiconductor, it is possible to establish a correlation between the adsorbed gas species and the physical properties of the WO3 layer. In the results, it is indicated that a Lewis acid–base reaction is the most likely mechanism for the increase in resistance observed at temperatures below 150 °C. In the results, at higher temperatures, the assumption of a radical mechanism that causes a decrease in resistance is supported.
Surface-enhanced Raman spectroscopy (SERS) with subsequent chemometric evaluation was performed for the rapid and non-destructive differentiation of seven important meat-associated microorganisms, namely Brochothrix thermosphacta DSM 20171, Pseudomonas fluorescens DSM 4358, Salmonella enterica subsp. enterica sv. Enteritidis DSM 14221, Listeria monocytogenes DSM 19094, Micrococcus luteus DSM 20030, Escherichia coli HB101 and Bacillus thuringiensis sv. israelensis DSM 5724. A simple method for collecting spectra from commercial paper-based SERS substrates without any laborious pre-treatments was used. In order to prepare the spectroscopic data for classification at genera level with a subsequent chemometric evaluation consisting of principal component analysis and discriminant analysis, a pre-processing method with spike correction and sum normalisation was performed. Because of the spike correction rather than exclusion, and therefore the use of a balanced data set, the multivariate analysis of the data is significantly resilient and meaningful. The analysis showed that the differentiation of meat-associated microorganisms and thereby the detection of important meat-related pathogenic bacteria was successful on genera level and a cross-validation as well as a classification of ungrouped data showed promising results, with 99.5 % and 97.5 %, respectively.
Because the robust and rapid determination of spoilage microorganisms is becoming increasingly important in industry, the use of IR microspectroscopy, and the establishment of robust and versatile chemometric models for data processing and classification, is gaining importance. To further improve the chemometric models, bacterial stress responses were induced, to study the effect on the IR spectra and to improve the chemometric model. Thus, in this work, nine important food-relevant microorganisms were subjected to eight stress conditions, besides the regular culturing as a reference. Spectral changes compared to normal growth conditions without stressors were found in the spectral regions of 900–1500 cm−1 and 1500–1700 cm−1. These differences might stem from changes in the protein secondary structure, exopolymer production, and concentration of nucleic acids, lipids, and polysaccharides. As a result, a model for the discrimination of the studied microorganisms at the genus, species and strain level was established, with an accuracy of 96.6%. This was achieved despite the inclusion of various stress conditions and times after incubation of the bacteria. In addition, a model was developed for each individual microorganism, to separate each stress condition or regular treatment with 100% accuracy.