Refine
H-BRS Bibliography
- yes (5)
Departments, institutes and facilities
- Internationales Zentrum für Nachhaltige Entwicklung (IZNE) (5)
- Fachbereich Ingenieurwissenschaften und Kommunikation (4)
- Institut für Technik, Ressourcenschonung und Energieeffizienz (TREE) (4)
- Fachbereich Informatik (2)
- Fachbereich Wirtschaftswissenschaften (2)
- Institut für KI und Autonome Systeme (A2S) (1)
Document Type
- Article (2)
- Conference Object (2)
- Working Paper (1)
Has Fulltext
- yes (5)
Keywords
- Ghanaian health sector (1)
- LSTM (1)
- SARIMA (1)
- West Africa (1)
- load forecasting (1)
- neural network (1)
Ghana suffers from frequent power outages, which can be compensated by off-grid energy solutions. Photovoltaic-hybrid systems become more and more important for rural electrification due to their potential to offer a clean and cost-effective energy supply. However, uncertainties related to the prediction of electrical loads and solar irradiance result in inefficient system control and can lead to an unstable electricity supply, which is vital for the high reliability required for applications within the health sector. Model predictive control (MPC) algorithms present a viable option to tackle those uncertainties compared to rule-based methods, but strongly rely on the quality of the forecasts. This study tests and evaluates (a) a seasonal autoregressive integrated moving average (SARIMA) algorithm, (b) an incremental linear regression (ILR) algorithm, (c) a long short-term memory (LSTM) model, and (d) a customized statistical approach for electrical load forecasting on real load data of a Ghanaian health facility, considering initially limited knowledge of load and pattern changes through the implementation of incremental learning. The correlation of the electrical load with exogenous variables was determined to map out possible enhancements within the algorithms. Results show that all algorithms show high accuracies with a median normalized root mean square error (nRMSE) <0.1 and differing robustness towards load-shifting events, gradients, and noise. While the SARIMA algorithm and the linear regression model show extreme error outliers of nRMSE >1, methods via the LSTM model and the customized statistical approaches perform better with a median nRMSE of 0.061 and stable error distribution with a maximum nRMSE of <0.255. The conclusion of this study is a favoring towards the LSTM model and the statistical approach, with regard to MPC applications within photovoltaic-hybrid system solutions in the Ghanaian health sector.
In diesem Paper wird ein Modell eines Photovoltaik(PV)-Diesel-Hybrid-Systems aufgebaut. Dieses System besitzt neben einer PV-Anlage einen Batteriespeicher und ist an das öffentliche Stromnetz angeschlossen. Bei einem Ausfall aller drei Energiequellen stellt ein Dieselgenerator die Stromversorgung sicher. Mit Hilfe des erstellten Modells wird der Einfluss der unterschiedlichen Jahreszeiten und Wetterbedingungen auf den PV-Ertrag und das gesamte System im Zeitraum von Februar 2016 bis Februar 2017 untersucht. Die Messdaten dafür stammen von einem Krankenhaus in Akwatia, Ghana. Das Krankenhaus besitzt bereits eine PV-Anlage und einen Dieselgenerator als Backup.
Ein weiterer Aspekt der Untersuchung ist der Einfluss der Stromausfälle, die in dieser Region häufig vorkommen, auf den Einsatz des Generators.
Resultat der Untersuchung ist die Relevanz saisonaler und infrastruktureller Einflüsse auf die Betriebsweise des Systems. Mit Hilfe des erstellten Modells wurde analysiert, dass besonders während der Regenzeit im August die PV-Leistung sinkt und folglich viel Energie durch das öffentliche Stromnetz und den Generator bereitgestellt werden muss. Ein weiterer signifikanter Einbruch im PV-Ertrag ist zur Zeit des Harmattans im Januar zu verzeichnen.
The accurate forecasting of solar radiation plays an important role for predictive control applications for energy systems with a high share of photovoltaic (PV) energy. Especially off-grid microgrid applications using predictive control applications can benefit from forecasts with a high temporal resolution to address sudden fluctuations of PV-power. However, cloud formation processes and movements are subject to ongoing research. For now-casting applications, all-sky-imagers (ASI) are used to offer an appropriate forecasting for aforementioned application. Recent research aims to achieve these forecasts via deep learning approaches, either as an image segmentation task to generate a DNI forecast through a cloud vectoring approach to translate the DNI to a GHI with ground-based measurement (Fabel et al., 2022; Nouri et al., 2021), or as an end-to-end regression task to generate a GHI forecast directly from the images (Paletta et al., 2021; Yang et al., 2021). While end-to-end regression might be the more attractive approach for off-grid scenarios, literature reports increased performance compared to smart-persistence but do not show satisfactory forecasting patterns (Paletta et al., 2021). This work takes a step back and investigates the possibility to translate ASI-images to current GHI to deploy the neural network as a feature extractor. An ImageNet pre-trained deep learning model is used to achieve such translation on an openly available dataset by the University of California San Diego (Pedro et al., 2019). The images and measurements were collected in Folsom, California. Results show that the neural network can successfully translate ASI-images to GHI for a variety of cloud situations without the need of any external variables. Extending the neural network to a forecasting task also shows promising forecasting patterns, which shows that the neural network extracts both temporal and momentarily features within the images to generate GHI forecasts.
Intention: Within the research project EnerSHelF (Energy-Self-Sufficiency for Health Facilities in Ghana), i. a. energy-meteorological and load-related measurement data are collected, for which an overview of the availability is to be presented on a poster.
Context: In Ghana, the total electricity consumed has almost doubled between 2008 and 2018 according to the Energy Commission of Ghana. This goes along with an unstable power grid, resulting in power outages whenever electricity consumption peaks. The blackouts called "dumsor" in Ghana, pose a severe burden to the healthcare sector. Innovative solutions are needed to reduce greenhouse gas emissions and improve energy and health access.
This work proposes a novel approach for probabilistic end-to-end all-sky imager-based nowcasting with horizons of up to 30 min using an ImageNet pre-trained deep neural network. The method involves a two-stage approach. First, a backbone model is trained to estimate the irradiance from all-sky imager (ASI) images. The model is then extended and retrained on image and parameter sequences for forecasting. An open access data set is used for training and evaluation. We investigated the impact of simultaneously considering global horizontal (GHI), direct normal (DNI), and diffuse horizontal irradiance (DHI) on training time and forecast performance as well as the effect of adding parameters describing the irradiance variability proposed in the literature. The backbone model estimates current GHI with an RMSE and MAE of 58.06 and 29.33 W m−2, respectively. When extended for forecasting, the model achieves an overall positive skill score reaching 18.6 % compared to a smart persistence forecast. Minor modifications to the deterministic backbone and forecasting models enables the architecture to output an asymmetrical probability distribution and reduces training time while leading to similar errors for the backbone models. Investigating the impact of variability parameters shows that they reduce training time but have no significant impact on the GHI forecasting performance for both deterministic and probabilistic forecasting while simultaneously forecasting GHI, DNI, and DHI reduces the forecast performance.