Refine
Departments, institutes and facilities
Keywords
- Composites (1)
- Desinfektion (1)
- Engineering (1)
- Mass transport (1)
- Nafion™ (1)
- PEM electrolysis (1)
- Permeation (1)
- Tap water (1)
- Wasserverteilung (1)
- dissolved ozone (1)
Vorrichtung (1) zur Bestimmung eines TOC-Gehalts in einer wässrigen Lösung, die folgendes aufweist:- zumindest eine Ozonquelle (8) zur Erzeugung von Ozon in der wässrigen Lösung;- zumindest eine Strahlungsquelle (9) zur Bestrahlung der wässrigen Lösung mit UV-Strahlung;- eine Einrichtung (15) zur Bestimmung der elektrischen Leitfähigkeit der ozonierten und bestrahlten wässrigen Lösung.
Monitoring the content of dissolved ozone in purified water is often mandatory to ensure the appropriate levels of disinfection and sanitization. However, quantification bears challenges as colorimetric assays require laborious off-line analysis, while commercially available instruments for electrochemical process analysis are expensive and often lack the possibility for miniaturization and discretionary installation. In this study, potentiometric ionic polymer metal composite (IPMC) sensors for the determination of dissolved ozone in ultrapure water (UPW) systems are presented. Commercially available polymer electrolyte membranes are treated via an impregnation-reduction method to obtain nanostructured platinum layers. By applying 25 different synthesis conditions, layer thicknesses of 2.2 to 12.6 µm are obtained. Supporting radiographic analyses indicate that the platinum concentration of the impregnation solution has the highest influence on the obtained metal loading. The sensor response behavior is explained by a Langmuir pseudo-isotherm model and allows the quantification of dissolved ozone to trace levels of less than 10 µg L−1. Additional statistical evaluations show that the expected Pt loading and radiographic blackening levels can be predicted with high accuracy and significance (R2adj. > 0.90, p < 10−10) solely from given synthesis conditions.
Operating an ozone-evolving PEM electrolyser in tap water: A case study of water and ion transport
(2022)
While PEM water electrolysis could be a favourable technique for in situ sanitization with ozone, its application is mainly limited to the use of ultrapure water to achieve a sufficient long-time stability. As additional charge carriers influence the occurring transport phenomena, we investigated the impact of different feed water qualities on the performance of a PEM tap water electrolyser for ozone evolution. The permeation of water and the four most abundant cations (Na+, K+, Ca2+, Mg2+) is characterised during stand-by and powered operation at different charge densities to quantify underlying transport mechanisms. Water transport is shown to linearly increase with the applied current (95 ± 2 mmol A−1 h−1) and occurs decoupled from ion permeation. A limitation of ion permeation is given by the transfer of ions in water to the anode/PEM interface. The unstabilized operation of a PEM electrolyser in tap water leads to a pH gradient which promotes the formation of magnesium and calcium carbonates and hydroxides on the cathode surface. The introduction of a novel auxiliary cathode in the anolytic compartment has shown to suppress ion permeation by close to 20%.