Refine
H-BRS Bibliography
- yes (2)
Departments, institutes and facilities
Document Type
- Article (2)
Language
- English (2)
Has Fulltext
- yes (2)
Keywords
- additive (2)
- antioxidant (2)
- European horse chestnut (1)
- UV absorbance (1)
- UV spectrum (1)
- bio‐based (1)
- extraction (1)
- food contact material (1)
- formulation (1)
- migration (1)
Background: To protect renewable packaging materials against autoxidation and decomposition when substituting harmful synthetic stabilizers with bioactive and bio-based compounds, extracts from Aesculus hippocastanum L. seeds were evaluated. The study objectives were to determine the antioxidant efficacy of bioactive compounds in horse chestnut seeds with regard to different seed fractions, improve their extraction, and to evaluate waste reuse. Methods: Different extraction techniques for field samples were evaluated and compared with extracts of industrial waste samples based on total phenolic content and total antioxidant capacity (2,2’-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS)). The molecular weight distribution and absorbance in ultraviolet range (UV) of seed coat extracts were determined, and the possibility of extracts containing proanthocyanidins was examined. Results: Seed coat extracts show a remarkable antioxidant activity and a high UV absorbance. Passive extractions are efficient and much less laborious. Applying waste product seed coats leads to a reduced antioxidant activity, total phenolic content, and UV absorbance compared to the field sample counterparts. In contrast to peeled seed extracts, all seed coat extracts contain proanthocyanidins. Discussion: Seed coats are a potential source of bioactive compounds, particularly regarding sustainable production and waste reuse. With minimum effort, highly bioactive extracts with high potential as additives can be prepared.
Different analyses and feasibility studies have been conducted on the plant extracts of thyme (Thymus vulgaris), European horse chestnut (Aesculus hippocastanum), Nordmann fir (Abies nordmanniana), and snowdrop (Galanthus elwesii) to evaluate bio‐based alternatives to common petrol‐based stabilisers. For this purpose, in this study, plant extracts were incorporated into poly‐lactic acid films (PLA) at different concentrations. The films’ UV absorbance and migration into packed food was analysed via photometric assays (ABTS radical cation scavenging capacity assay, β‐carotene assay) and GC–MS analysis. Furthermore, the synergistic antioxidant effects of various combinations of extracts and isolated active compounds were determined. This way, antioxidant effects can be increased, allowing for a highly effective use of resources. All extracts were successfully incorporated into PLA films and showed notable photoabsorbing effects, while no migration risk was observed. Depending on extract combinations, high synergistic effects of up to 726% can be utilised to improve the effectiveness of bio‐based extracts. This applies particularly to tomato paste and Aesculus hippocastanum extracts, which overall show high synergistic and antioxidant effects in combination with each other and with isolated active compounds. The study shows that it is possible to create safe bio‐based antioxidant films which show even improved properties when using highlighted target combinations.