Refine
H-BRS Bibliography
- yes (9)
Departments, institutes and facilities
Document Type
- Article (6)
- Conference Object (2)
- Part of a Book (1)
Keywords
- EEG (1)
- ERP (1)
- Evidenz (1)
- Exercise (1)
- Gesundheitsmanagement (1)
- Kosten-Nutzen-Betrachtung (1)
- N200 (1)
- P300 (1)
- Sense of presence (1)
- Teilnehmerquoten (1)
Virtual reality environments are increasingly being used to encourage individuals to exercise more regularly, including as part of treatment in those with mental health or neurological disorders. The success of virtual environments likely depends on whether a sense of presence can be established, where participants become fully immersed in the virtual environment. Exposure to virtual environments is associated with physiological responses, including cortical activation changes. Whether the addition of a real exercise within a virtual environment alters sense of presence perception, or the accompanying physiological changes, is not known. In a randomized and controlled study design, trials of moderate-intensity exercise (i.e. self-paced cycling) and no-exercise (i.e. automatic propulsion) were performed within three levels of virtual environment exposure. Each trial was 5-min in duration and was followed by post-trial assessments of heart rate, perceived sense of presence, EEG, and mental state. Changes in psychological strain and physical state were generally mirrored by neural activation patterns. Furthermore these change indicated that exercise augments the demands of virtual environment exposures and this likely contributed to an enhanced sense of presence.
Deployment of modern data-driven machine learning methods, most often realized by deep neural networks (DNNs), in safety-critical applications such as health care, industrial plant control, or autonomous driving is highly challenging due to numerous model-inherent shortcomings. These shortcomings are diverse and range from a lack of generalization over insufficient interpretability and implausible predictions to directed attacks by means of malicious inputs. Cyber-physical systems employing DNNs are therefore likely to suffer from so-called safety concerns, properties that preclude their deployment as no argument or experimental setup can help to assess the remaining risk. In recent years, an abundance of state-of-the-art techniques aiming to address these safety concerns has emerged. This chapter provides a structured and broad overview of them. We first identify categories of insufficiencies to then describe research activities aiming at their detection, quantification, or mitigation. Our work addresses machine learning experts and safety engineers alike: The former ones might profit from the broad range of machine learning topics covered and discussions on limitations of recent methods. The latter ones might gain insights into the specifics of modern machine learning methods. We hope that this contribution fuels discussions on desiderata for machine learning systems and strategies on how to help to advance existing approaches accordingly.
An Experimental Field-Study on Active and Passive Work Breaks in a Stressful Work Environment
(2017)
Work breaks are known to have positive effects on employees’ health, performance, and safety. However, prior research has focused mainly on their timing, duration, and frequency but less on break activities. Moreover, most studies examined work breaks in rather repetitive and physical demanding work. Thus, we conducted an experimental field study with a sample of employees’ working in a stressful and cognitive demanding working environment and examined how different types of work breaks (boxing, deep relaxation, and usual breaks) affect participants’ mood, cognitive performance, and neuro-physiological state.
The number of studies on work breaks and the importance of this subject is growing rapidly, with research showing that work breaks increase employees’ wellbeing and performance and workplace safety. However, comparing the results of work break research is difficult since the study designs and methods are heterogeneous and there is no standard theoretical model for work breaks. Based on a systematic literature search, this scoping review included a total of 93 studies on experimental work break research conducted over the last 30 years. This scoping review provides a first structured evaluation regarding the underlying theoretical framework, the variables investigated, and the measurement methods applied. Studies using a combination of measurement methods from the categories “self-report measures,” “performance measures,” and “physiological measures” are most common and to be preferred in work break research. This overview supplies important information for ergonomics researchers allowing them to design work break studies with a more structured and stronger theory-based approach. A standard theoretical model for work breaks is needed in order to further increase the comparability of studies in the field of experimental work break research in the future.