Refine
Departments, institutes and facilities
- Internationales Zentrum für Nachhaltige Entwicklung (IZNE) (62)
- Institut für Technik, Ressourcenschonung und Energieeffizienz (TREE) (60)
- Fachbereich Ingenieurwissenschaften und Kommunikation (58)
- Fachbereich Informatik (6)
- Fachbereich Wirtschaftswissenschaften (4)
- Institut für KI und Autonome Systeme (A2S) (2)
- Zentrum für Innovation und Entwicklung in der Lehre (ZIEL) (1)
Document Type
- Conference Object (31)
- Article (24)
- Dataset (4)
- Preprint (4)
- Working Paper (3)
- Lecture (2)
- Report (2)
- Part of a Book (1)
- Diploma Thesis (1)
- Doctoral Thesis (1)
Year of publication
Keywords
- West Africa (8)
- energy meteorology (5)
- Ghana (4)
- Global horizontal irradiance (4)
- Solar energy (4)
- AOD (2)
- Aerosol (2)
- COD (2)
- Distribution grid management (2)
- Energiemeteorologie (2)
Solar energy is one option to serve the rising global energy demand with low environmental Impact [1]. Building an energy system with a considerable share of solar power requires long-term investment and a careful investigation of potential sites. Therefore, understanding the impacts from varying regionally and locally determined meteorological conditions on solar energy production will influence energy yield projections. Clouds are moving on a short term timescale and have a high influence on the available solar radiation, as they absorb, reflect and scatter parts of the incoming light [2]. However, modeling photovoltaic (PV) power yields with a spectral resolution and local cloud information gives new insights on the atmospheric impact on solar energy.
Solar energy is one option to serve the rising global energy demand with low environmental impact.1 Building an energy system with a considerable share of solar power requires long-term investment and a careful investigation of potential sites. Therefore, understanding the impacts from varying regionally and locally determined meteorological conditions on solar energy production will influence energy yield projections. Clouds are moving on a short term timescale and have a high influence on the available solar radiation, as they absorb, reflect and scatter parts of the incoming light.2 However, the impact of cloudiness on photovoltaic power yields (PV) and cloud induced deviations from average yields might vary depending on the technology, location and time scale under consideration.
Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data. Hence the generation of robust reviewed global irradiance data is an essential contribution for the energy transition.
Impact of atmospheric aerosols on photovoltaic energy production - Scenario for the Sahel zone
(2017)
Photovoltaic (PV) energy is one option to serve the rising global energy need with low environmental impact. PV is of particular interest for local energy solutions in developing countries prone to high solar insolation. In order to assess the PV potential of prospective sites, combining knowledge of the atmospheric state modulating solar radiation and the PV performance is necessary. The present study discusses the PV power as function of atmospheric aerosols in the Sahel zone for clear-sky-days. Daily yields for a polycrystalline silicon PV module are reduced by up to 48 % depending on the climatologically-relevant aerosol abundances.
Estimates of global horizontal irradiance (GHI) from reanalysis and satellite-based data are the most important information for the design and monitoring of PV systems in Africa, but their quality is unknown due to the lack of in situ measurements. In this study, we evaluate the performance of hourly GHI from state-of-the-art reanalysis and satellite-based products (ERA5, CAMS, MERRA-2, and SARAH-2) with 37 quality-controlled in situ measurements from novel meteorological networks established in Burkina Faso and Ghana under different weather conditions for the year 2020. The effects of clouds and aerosols are also considered in the analysis by using common performance measures for the main quality attributes and a new overall performance value for the joint assessment. The results show that satellite data performs better than reanalysis data under different atmospheric conditions. Nevertheless, both data sources exhibit significant bias of more than 150 W/m2 in terms of RMSE under cloudy skies compared to clear skies. The new measure of overall performance clearly shows that the hourly GHI derived from CAMS and SARAH-2 could serve as viable alternative data for assessing solar energy in the different climatic zones of West Africa.
Accurate forecasting of solar irradiance is crucial for the integration of solar energy into the power grid, power system planning, and the operation of solar power plants. The Weather Research and Forecasting (WRF) model, with its solar radiation (WRF-Solar) extension, has been used to forecast solar irradiance in various regions worldwide. However, the application of the WRF-Solar model for global horizontal irradiance (GHI) forecasting in West Africa, specifically in Ghana, has not been studied. This study aims to evaluate the performance of the WRF-Solar model for GHI forecasting in Ghana, focusing on 3 health centers (Kologo, Kumasi and Akwatia) for the year 2021. We applied a two one-way nested domain (D1=15 km and D2=3 km) to investigate the ability of the WRF solar model to forecast GHI up to 72 hours in advance under different atmospheric conditions. The initial and lateral boundary conditions were taken from the ECMWF operational forecasts. In addition, the optical aerosol depth (AOD) data at 550 nm from the Copernicus Atmosphere Monitoring Service (CAMS) were considered. The study uses statistical metrics such as mean bias error (MBE), root mean square error (RMSE), to evaluate the performance of the WRF-Solar model with the observational data obtained from automatic weather stations in the three health centers in Ghana. The results of this study will contribute to the understanding of the capabilities and limitations of the WRF-Solar model for forecasting GHI in West Africa, particularly in Ghana, and provide valuable information for stakeholders involved in solar energy generation and grid integration towards optimized management of in the region.
Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic (PV) systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data.
Solar energy is one option to serve the rising global energy demand with low environmental impact. Building an energy system with a considerable share of solar power requires long-term investment and a careful investigation of potential sites. Therefore, understanding the impacts from varying regionally and locally determined meteorological conditions on solar energy production will influence energy yield projections.
Solar energy plants are one of the key options to serve the rising global energy need with low environmental impact. Aerosols reduce global solar radiation due to absorption and scattering and therewith solar energy yields. Depending on the aerosol composition and size distribution they reduce the direct component of the solar radiation and modify the direction of the diffuse component compared to standard atmospheric conditions without aerosols.
Atmospheric aerosols affect the power production of solar energy systems. Their impact depends on both the atmospheric conditions and the solar technology employed. By being a region with a lack in power production and prone to high solar insolation, West Africa shows high potential for the application of solar power systems. However, dust outbreaks, containing high aerosol loads, occur especially in the Sahel, located between the Saharan desert in the north and the Sudanian Savanna in the south. They might affect the whole region for several days with significant effects on power generation. This study investigates the impact of atmospheric aerosols on solar energy production for the example year 2006 making use of six well instrumented sites in West Africa. Two different solar power technologies, a photovoltaic (PV) and a parabolic through (PT) power plant, are considered. The daily reduction of solar power due to aerosols is determined over mostly clear-sky days in 2006 with a model chain combining radiative transfer and technology specific power generation. For mostly clear days the local daily reduction of PV power (at alternating current) (PVAC) and PT power (PTP) due to the presence of aerosols lies between 13 % and 22 % and between 22 % and 37 %, respectively. In March 2006 a major dust outbreak occurred, which serves as an example to investigate the impact of an aerosol extreme event on solar power. During the dust outbreak, daily reduction of PVAC and PTP of up to 79 % and 100 % occur with a mean reduction of 20 % to 40 % for PVAC and of 32 % to 71 % for PTP during the 12 days of the event.
West Africa has a great potential for the application of solar energy systems, as it combines high levels of solar irradiance with a lack of energy production. Southern West Africa is a region with a very high aerosol load. Urbanization, uncontrolled fires, traffic as well as power plants and oil rigs lead to increasing anthropogenic emissions. The naturally circulating north winds bring mineral dust from the Sahel and Sahara and monsoons - sea salt and other oceanic compounds from the south. The EU-funded Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA) project (2014–2018), dlivered the most complete dataset of the atmosphere over the region to date. In our study, we use in-situ measured optical properties of aerosols from the airborne campaign over the Gulf of Guinea and inland, and from ground measurements in coastal cities.
In den Atmosphärenwissenschaften spielt die Strahlungsbilanz der Erde eine wichtige Rolle für unser Verständnis des Klimasystems. Hier liefern ausgereifte Satellitenprodukte dekadische Klimazeitreihen mit einer so hohen Genauigkeit, dass z.B. Änderungen im Zusammenhang mit dem Klimawandel detektiert werden können. Dies gilt insbesondere auch für die solaren Strahlungsflüsse an der Erdoberfläche. Beim Vergleich dieser Satellitenprodukte mit instantanen Beobachtungen der Strahlung am Erdboden sind jedoch oft erhebliche Abweichungen feststellbar, die hauptsächlich durch kleinskalige Variabilität in der räumlichen Struktur von Wolken und ihrer Strahlungswirkung verursacht werden. Hier ist auch zu bedenken, dass Bodenbeobachtungen fast einer Punktmessung entsprechen, während Satellitenpixel eine Fläche in der Größenordnung von Quadratkilometern abtasten.
The rapid increase in solar photovoltaic (PV) installations worldwide has resulted in the electricity grid becoming increasingly dependent on atmospheric conditions, thus requiring more accurate forecasts of incoming solar irradiance. In this context, measured data from PV systems are a valuable source of information about the optical properties of the atmosphere, in particular the cloud optical depth (COD). This work reports first results from an inversion algorithm developed to infer global, direct and diffuse irradiance as well as atmospheric optical properties from PV power measurements, with the goal of assimilating this information into numerical weather prediction (NWP) models.
This paper addresses long-term historical changes in solar irradiance in West Africa (3 to 20° N and 20° W to 16° E) and the implications for photovoltaic systems. Here, we use satellite irradiance (Surface Solar Radiation Data Set – Heliosat, Edition 2.1 – SARAH-2.1) and temperature data from a reanalysis (ERA5) to derive photovoltaic yields. Based on 35 years of data (1983–2017), the temporal and regional variability as well as long-term trends in global and direct horizontal irradiance are analyzed. Furthermore, a detailed time series analysis is undertaken at four locations. According to the high spatial resolution SARAH-2.1 data record (0.05°×0.05°), solar irradiance is largest (up to a 300 W m−2 daily average) in the Sahara and the Sahel zone with a positive trend (up to 5 W m−2 per decade) and a lower temporal variability (<75 W m−2 between 1983 and 2017 for daily averages). In contrast, the solar irradiance is lower in southern West Africa (between 200 W m−2 and 250 W m−2) with a negative trend (up to −5 W m−2 per decade) and a higher temporal variability (up to 150 W m−2). The positive trend in the north is mostly connected to the dry season, whereas the negative trend in the south occurs during the wet season. Both trends show 95 % significance. Photovoltaic (PV) yields show a strong meridional gradient with the lowest values of around 4 kWh kWp−1 in southern West Africa and values of more than 5.5 kWh kWp−1 in the Sahara and Sahel zone.
Long-term variability of solar irradiance and its implications for photovoltaic power in West Africa
(2020)
West Africa is one of the least developed regions in the world regarding the energy availability and energy security. Located close to the equator West Africa receives high amounts of global horizontal irradiance (GHI). Thus, solar power and especially photovoltaic (PV) systems seem to be a promising solution to provide electricity with low environmental impact. To plan and to dimension a PV power system climatological data for global horizontal irradiance (GHI) and its variability need to be taken into account. However, ground based measurements of irradiances are not available continuously and cover only a few discrete locations.
Long-term variability of solar irradiance and its implications for photovoltaic power in West Africa
(2020)
This paper addresses long-term changes in solar irradiance for West Africa (3° N to 20° N and 20° W to 16° E) and its implications for photovoltaic power systems. Here we use satellite irradiance (Surface Solar Radiation Data Set-Heliosat, Edition 2.1, SARAH-2.1) to derive photovoltaic yields. Based on 35 years of data (1983–2017) the temporal and regional variability as well as long-term trends of global and direct horizontal irradiance are analyzed. Furthermore, at four locations a detailed time series analysis is undertaken. The dry and the wet season are considered separately.
In this paper, a gas-to-power (GtoP) system for power outages is digitally modeled and experimentally developed. The design includes a solid-state hydrogen storage system composed of TiFeMn as a hydride forming alloy (6.7 kg of alloy in five tanks) and an air-cooled fuel cell (maximum power: 1.6 kW). The hydrogen storage system is charged under room temperature and 40 bar of hydrogen pressure, reaching about 110 g of hydrogen capacity. In an emergency use case of the system, hydrogen is supplied to the fuel cell, and the waste heat coming from the exhaust air of the fuel cell is used for the endothermic dehydrogenation reaction of the metal hydride. This GtoP system demonstrates fast, stable, and reliable responses, providing from 149 W to 596 W under different constant as well as dynamic conditions. A comprehensive and novel simulation approach based on a network model is also applied. The developed model is validated under static and dynamic power load scenarios, demonstrating excellent agreement with the experimental results.
Fundamentals of Energy Meteorology - Influence of atmospheric parameters on solar energy production
(2015)
This thesis contributes to a better understanding of the effect of heterogeneous chemistry on ozone in the tropopause region. As part of the German research project ALTO, it especially focuses on the impact of aircraft emissions on heterogeneous ozone chemistry in this region. This is an important question as ozone is a strong greenhouse gas, whose radiative effect, is strongest near the tropopause.
In general, the treatment of heterogeneous processes on background and aviation-produced particles requires the consideration of processes ranging from nanometer to continental scale. For this reason the present modeling work includes a treatment of small scale processes as well as the development and subsequent application of parameterisations. Three numerical trajectory box models considering highly detailed microphysical and chemical processes have been developed: (a) an aircraft plume model including coagulation, chemistry and plume dilution, (b) a particle-size resolved microphysical box model and, (c) a comprehensive photo-chemical box model.
The accurate forecasting of solar radiation plays an important role for predictive control applications for energy systems with a high share of photovoltaic (PV) energy. Especially off-grid microgrid applications using predictive control applications can benefit from forecasts with a high temporal resolution to address sudden fluctuations of PV-power. However, cloud formation processes and movements are subject to ongoing research. For now-casting applications, all-sky-imagers (ASI) are used to offer an appropriate forecasting for aforementioned application. Recent research aims to achieve these forecasts via deep learning approaches, either as an image segmentation task to generate a DNI forecast through a cloud vectoring approach to translate the DNI to a GHI with ground-based measurement (Fabel et al., 2022; Nouri et al., 2021), or as an end-to-end regression task to generate a GHI forecast directly from the images (Paletta et al., 2021; Yang et al., 2021). While end-to-end regression might be the more attractive approach for off-grid scenarios, literature reports increased performance compared to smart-persistence but do not show satisfactory forecasting patterns (Paletta et al., 2021). This work takes a step back and investigates the possibility to translate ASI-images to current GHI to deploy the neural network as a feature extractor. An ImageNet pre-trained deep learning model is used to achieve such translation on an openly available dataset by the University of California San Diego (Pedro et al., 2019). The images and measurements were collected in Folsom, California. Results show that the neural network can successfully translate ASI-images to GHI for a variety of cloud situations without the need of any external variables. Extending the neural network to a forecasting task also shows promising forecasting patterns, which shows that the neural network extracts both temporal and momentarily features within the images to generate GHI forecasts.
This dataset contains data from two measurement campaigns in autumn 2018 and summer 2019 that were part of the BMWi project "MetPVNet", and serve as a supplement to the paper "Dynamic model of photovoltaic module temperature as a function of atmospheric conditions", published in the special edition of "Advances in Science and Research", the proceedings of the 19th EMS Annual Meeting: European Conference for Applied Meteorology and Climatology 2019.
Data are resampled to one minute, and include:
PV module temperature
Ambient temperature
Plane-of-array irradiance
Windspeed
Atmospheric thermal emission
The data were used for the dynamic temperature model, as presented in the paper
Based on an analysis of the aerosol optical properties for Cotonou, Benin from the DACCIWA measurement campaign, we investigate the impact of aerosols on PV power for polycrystalline silicon and amorphous silicon technology using a spectrally resolved model chain. The model considers both spectral effects on global irradiance due to different aerosol properties as well as the spectral response of different PV technologies. The results show that aerosol emissions due to the biomass outbreak lead to solar flux losses of up to 55%, which correspond to a reduction in photovoltaic power of up to 81% for the polycrystalline cell and 78% for the amorphous cell. Comparing the effects of aerosols on the photovoltaic power between the two technologies, we find that during the morning and evening hours, when there is more diffuse irradiance, the amorphous cell suffers a greater reduction in power (36%) than the polycrystalline cell (27%). Conversely, in the middle of the day, we observe a greater PV power reduction of 12% for the polycrystalline cell compared to that for the amorphous cell (8%).
In her recent article, Bender discusses several aspects of research–practice–collaborations (RPCs). In this commentary, we apply Bender's arguments to experiences in engineering research and development (R&D). We investigate the influence of interaction with practice partners on relevance, credibility, and legitimacy in the special engineering field of product development and analyze which methodological approaches are already being pursued for dealing with diverging interests and asymmetries and which steps will be necessary to include interests of civil society beyond traditional customer relations.
Energy meteorology is an applied research field of meteorology that focuses on the study and prediction of weather conditions and events that affect energy production and use. This field has become increasingly important as the energy industry has become more dependent on weather conditions, especially in the areas of renewable energy sources such as wind energy, solar energy, and hydropower. The following paper has been written by experts of the Committee on Energy Meteorology of the German Meteorological Society summarizing their more than 30 years of experience and lessons learnt. It gives an overview of activities in energy meteorology that are already essential for the transformation of energy systems to systems with high shares of renewable energies. Building on this, the experts have created a vision of future topics that describe the future research landscape of energy meteorology. The authors explain that work in energy meteorology in recent years has primarily been concerned with the physically based modeling of wind and solar power generation and the development of short-term forecasting systems. In future years, a significant expansion of work in the areas of energy system modeling, digitalization, and climate change is expected. This includes the detailed consideration of regionally specified spatiotemporal variability for system design, the integration of artificial intelligence skills, the development of weather-related consumption based on smart meters, and the mapping of the effects of climate change on the energy system in planning and operating processes.
Aufgrund eines nahezu gleichlautenden Beschlusses des Kreistages im Rhein-Sieg-Kreis (RSK) und des Hauptausschusses der Stadt Bonn im Jahr 2011 wurden die jeweiligen Verwaltungen beauftragt, gemeinsam mit den Energieversorgern der Region ein Starthilfekonzept Elektromobilität zu entwickeln. In Folge dieses Beschlusses konstituierte sich Ende 2011 ein Arbeitskreis, der aus den Verwaltungen des Rhein-Sieg-Kreises und der Stadt Bonn, den Energieversorgern SWB Energie und Wasser, der Rhenag, den Stadtwerken Troisdorf, der Rheinenergie und den RWE besteht. Die inhaltlichen Schwerpunkte, die inzwischen in drei Arbeitskreisen behandelt werden, umfassen den Ausbau der Ladeinfrastruktur, die Öffentlichkeitsarbeit und die Bereitstellung von Strom aus regenerativen Quellen durch den Zubau entsprechender Anlagen in der Region. Während Maßnahmen zur Öffentlichkeitsarbeit und die Bereitstellung Grünen Stroms aus den Arbeitskreisen direkt bearbeitet und bewegt werden, ist dies aufgrund der Komplexität des Themas und der zahlreichen Einflussgrößen beim Ausbau der Ladeinfrastruktur nicht möglich. Daraus entstand die Überlegung einer Kooperation mit der Hochschule Bonn-Rhein-Sieg.
In Ghana, unreliable public grid infrastructure greatly impacts rural healthcare, where diesel generators are commonly used despite their high financial and environmental costs. Photovoltaic (PV)-hybrid systems offer a sustainable alternative, but require robust, predictive control strategies to ensure reliability. This study proposes a sector-specific Model Predictive Control (MPC) approach, integrating advanced load and meteorological forecasting for optimal energy dispatch. The methodology includes a long-short-term memory (LSTM)-based load forecasting model with probabilistic Monte Carlo dropout, a customized Numerical Weather Prediction (NWP) model based on the Weather Research and Forecasting (WRF) framework, and deep learning-based All-Sky Imager (ASI) nowcasting to improve short-term solar predictions. By combining these forecasting methods into a seamless prediction framework, the proposed MPC optimizes system performance while reducing reliance on fossil fuels. This study benchmarks the MPC against a traditional rule-based dispatch system, using data collected from a rural health facility in Kologo, Ghana. Results demonstrate that predictive control greatly reduces both economic and ecological costs. Compared to rule-based dispatch, diesel generator operation and fuel consumption are reduced by up to 61.62% and 47.17%, leading to economical and ecological cost savings of up to 20.7% and 31.78%. Additionally, system reliability improves, with battery depletion events during blackouts decreasing by up to 99.42%, while wear and tear on the diesel generator and battery are reduced by up to 54.93% and 37.34%, respectively. Furthermore, hyperparameter tuning enhances MPC performance, introducing further optimization potential. These findings highlight the effectiveness of predictive control in improving energy resilience for critical healthcare applications in rural settings.
Intention: Within the research project EnerSHelF (Energy-Self-Sufficiency for Health Facilities in Ghana), i. a. energy-meteorological and load-related measurement data are collected, for which an overview of the availability is to be presented on a poster.
Context: In Ghana, the total electricity consumed has almost doubled between 2008 and 2018 according to the Energy Commission of Ghana. This goes along with an unstable power grid, resulting in power outages whenever electricity consumption peaks. The blackouts called "dumsor" in Ghana, pose a severe burden to the healthcare sector. Innovative solutions are needed to reduce greenhouse gas emissions and improve energy and health access.
Anhand detaillierter Netzanalysen für ein reales Mittelspannungsnetzgebiet konnte gezeigt werden, dass sowohl die Einbindung von Prognosedaten auf Basis von Satelliten und Wetterdaten, als auch die Verbesserung von Folgetagsprognosen auf der Basis numerischer Wettermodelle einen deutlichen Mehrwert für ein prognosebasiertes Engpassmanagement bzw. Redispatch und Blindleistungsmanagement im Verteilnetz aufweisen. Auch Kurzfristprognosen auf der Basis von Satellitendaten haben einen positiven Effekt. Ein weiterer wichtiger Mehrwert des Projektes ist auch die Rückmeldung der kritischen Prognosesituationen aus Sicht der Anwendungsfälle, so dass wie bereits im Projekt gezeigt und darüber hinaus, Prognosen zielgerichteter auf die Anwendung im Verteilnetzbetrieb ausgelegt und optimiert werden können.
Weiterhin konnten Prognoseverbesserungen für das Vorhersagemodell des Deutschen Wetterdienstes durch die Assimilation von sichtbaren Satellitenbildern erreicht werden. Darüber hinaus wurden Wolken- und Strahlungsprodukte aus Satelliten verbessert und somit die Datenbasis für die Kurzfristprognose als auch für die Assimilation.
Darüber hinaus wurden verschiedene Methoden entwickelt, die zukünftig zu einer weiteren Prognoseverbesserung, insbesondere für Wettersituationen mit hohen Prognosefehlern, führen könnten. Solche Situationen wurden aus Sicht des Netzbetriebs und mithilfe von satellitenbasierten Analysen der Gesamtwetterlage für die Perioden der MetPVNet Messkampagnen identifiziert. Hierbei handelte es sich insbesondere um Situationen mit starker oder stark wechselhafter Bewölkung.
Für die MetPVNet Messkampagnen wurde auf der Basis eines Trainingsdatensatzes und in Abhängigkeit der Variabilitätsklasse die Abweichung der bodennahen Einstrahlung von Satellitendaten oder von Strahlungsprognosen quantifiziert. Diese Art der Informationen bietet zukünftig die Möglichkeit zur Bewertung der Prognosegüte.
The clear-sky radiative effect of aerosol–radiation interactions is of relevance for our understanding of the climate system. The influence of aerosol on the surface energy budget is of high interest for the renewable energy sector. In this study, the radiative effect is investigated in particular with respect to seasonal and regional variations for the region of Germany and the year 2015 at the surface and top of atmosphere using two complementary approaches.
First, an ensemble of clear-sky models which explicitly consider aerosols is utilized to retrieve the aerosol optical depth and the surface direct radiative effect of aerosols by means of a clear-sky fitting technique. For this, short-wave broadband irradiance measurements in the absence of clouds are used as a basis. A clear-sky detection algorithm is used to identify cloud-free observations. Considered are measurements of the short-wave broadband global and diffuse horizontal irradiance with shaded and unshaded pyranometers at 25 stations across Germany within the observational network of the German Weather Service (DWD). The clear-sky models used are the Modified MAC model (MMAC), the Meteorological Radiation Model (MRM) v6.1, the Meteorological–Statistical solar radiation model (METSTAT), the European Solar Radiation Atlas (ESRA), Heliosat-1, the Center for Environment and Man solar radiation model (CEM), and the simplified Solis model. The definition of aerosol and atmospheric characteristics of the models are examined in detail for their suitability for this approach.
Second, the radiative effect is estimated using explicit radiative transfer simulations with inputs on the meteorological state of the atmosphere, trace gases and aerosol from the Copernicus Atmosphere Monitoring Service (CAMS) reanalysis. The aerosol optical properties (aerosol optical depth, Ångström exponent, single scattering albedo and asymmetry parameter) are first evaluated with AERONET direct sun and inversion products. The largest inconsistency is found for the aerosol absorption, which is overestimated by about 0.03 or about 30 % by the CAMS reanalysis. Compared to the DWD observational network, the simulated global, direct and diffuse irradiances show reasonable agreement within the measurement uncertainty. The radiative kernel method is used to estimate the resulting uncertainty and bias of the simulated direct radiative effect. The uncertainty is estimated to −1.5 ± 7.7 and 0.6 ± 3.5 W m−2 at the surface and top of atmosphere, respectively, while the annual-mean biases at the surface, top of atmosphere and total atmosphere are −10.6, −6.5 and 4.1 W m−2, respectively.
The retrieval of the aerosol radiative effect with the clear-sky models shows a high level of agreement with the radiative transfer simulations, with an RMSE of 5.8 W m−2 and a correlation of 0.75. The annual mean of the REari at the surface for the 25 DWD stations shows a value of −12.8 ± 5 W m−2 as the average over the clear-sky models, compared to −11 W m−2 from the radiative transfer simulations. Since all models assume a fixed aerosol characterization, the annual cycle of the aerosol radiation effect cannot be reproduced. Out of this set of clear-sky models, the largest level of agreement is shown by the ESRA and MRM v6.1 models.
Due to the policy goals for sustainable energy production, renewable energy plants such as photovoltaics are increasingly in use. The energy production from solar radiation depends strongly on atmospheric conditions. As the weather mostly changes, electrical power generation fluctuates, making technical planning and control of power grids to a complex problem.
In diesem Paper wird ein Modell eines Photovoltaik(PV)-Diesel-Hybrid-Systems aufgebaut. Dieses System besitzt neben einer PV-Anlage einen Batteriespeicher und ist an das öffentliche Stromnetz angeschlossen. Bei einem Ausfall aller drei Energiequellen stellt ein Dieselgenerator die Stromversorgung sicher. Mit Hilfe des erstellten Modells wird der Einfluss der unterschiedlichen Jahreszeiten und Wetterbedingungen auf den PV-Ertrag und das gesamte System im Zeitraum von Februar 2016 bis Februar 2017 untersucht. Die Messdaten dafür stammen von einem Krankenhaus in Akwatia, Ghana. Das Krankenhaus besitzt bereits eine PV-Anlage und einen Dieselgenerator als Backup.
Ein weiterer Aspekt der Untersuchung ist der Einfluss der Stromausfälle, die in dieser Region häufig vorkommen, auf den Einsatz des Generators.
Resultat der Untersuchung ist die Relevanz saisonaler und infrastruktureller Einflüsse auf die Betriebsweise des Systems. Mit Hilfe des erstellten Modells wurde analysiert, dass besonders während der Regenzeit im August die PV-Leistung sinkt und folglich viel Energie durch das öffentliche Stromnetz und den Generator bereitgestellt werden muss. Ein weiterer signifikanter Einbruch im PV-Ertrag ist zur Zeit des Harmattans im Januar zu verzeichnen.