Refine
H-BRS Bibliography
- yes (5)
Departments, institutes and facilities
Document Type
- Article (2)
- Part of a Book (1)
- Doctoral Thesis (1)
- Preprint (1)
Keywords
- lignin (3)
- stem cells (3)
- biomaterial (2)
- bone regeneration (2)
- drug release (2)
- hydrogel (2)
- multivariate data processing (2)
- osteogenesis (2)
- scaffolds (2)
- tissue engineering (2)
Bedingt durch die zunehmende Rohstoffknappheit rückt die Suche nach alternativen, nachhaltigen Rohstoffen immer mehr in den Vordergrund. Im Hinblick auf effiziente chemische Verwertbarkeit bietet Lignin zahlreiche Vorteile für verschiedene Anwendungsbereiche, beispielsweise für biobasierte Polyurethanbeschichtungen, etwa zum Korrosionsschutz. Wesentliche Probleme bei der Verwendung von Lignin ergeben sich durch die Heterogenität dieses Naturstoffes sowie durch dessen geringe Polymerisations-Kompatibilität mit Polyolefinen; beide Faktoren beeinflussen u. a die mechanischen Eigenschaften entsprechender Lignin-basierter Polymere. Zudem hängt die konkrete Struktur und damit auch die physikalisch/chemischen Eigenschaften des Lignins stark von der jeweiligen Rohstoffquelle sowie dem Extraktionsverfahren ab.
Ziel dieser Arbeit war die Strukturaufklärung unmodifizierter und modifizierter Kraft-Lignine (KL) und die Untersuchung der Reaktivität aromatischer wie aliphatischer Hydroxygruppen in Abhängigkeit vom pH-Wert. Hierzu wurden unmodifizierte KL aus Schwarzlauge extrahiert und nachfolgend zunächst einer Soxhlet-Extraktion unterzogen, um in Methyltetrahydrofuran lösliche Lignin-Bestandteile – vornehmlich mit aromatischem Charakter – zu gewinnen und so eine verbesserte Löslichkeit auch im bei der nachfolgenden Polyurethansynthese als Lösemittel verwendeten THF zu gewährleisten. Überdies wurden die extrahierten KL via Demethylierung von Methoxygruppen chemisch modifiziert. Zudem wurde mittels nasschemischer Methoden sowie mit differentieller UV/VIS-Spektroskopie die Anzahl an für die Polymerisation erforderliche Hydroxygruppen quantifiziert. Im Anschluss erfolgte, unter besonderer Berücksichtigung ökologischer und ökonomischer Nachhaltigkeitsaspekte, die Synthese Lignin-basierter und funktionalisierter Polyurethanbeschichtungen. Die Oberflächenfunktionalisierung gestattete die Verbesserung der Oberflächenhomogenität sowie - via blend formation - das Einbetten von TPM-Farbstoffen in die Coatings. Hinsichtlich des Einflusses des bei der Extraktion gewählten pH-Wertes (pH = 2 - 5) auf das Verhalten der so gewonnenen KL wurde eine Veränderung sowohl der Struktur der Lignine als auch deren thermischer Stabilität beobachtet. Zudem wurde nachgewiesen, dass mit steigendem pH-Wert die Funktionalität/Reaktivität der aromatischen wie aliphatischen Hydroxygruppen im Lignin zunimmt. Aus unmodifiziertem KL wurden erfolgreich homogene Lignin-basierte Polyurethan-Coatings (LPU-Coatings) synthetisiert; diese LPU-Coatings zeigten bei Verwendung von bei höheren pH-Werten extrahierten KL homogenere, hydrophobe Oberflächenbeschaffenheit sowie gute thermische Stabilität. Zusätzliche Modifizierung der KL durch Demethylierung führte wegen der gesteigerten Anzahl freier Hydroxygruppen zu moderater Reaktivitätssteigerung und damit zu weiterer Verbesserung der Oberflächeneigenschaften hinsichtlich einer homogenen Oberflächenstruktur und -brillanz. Im Hinblick auf den Aspekt der Nachhaltigkeit wurden durch Syntheseoptimierung - bestehend aus Einstellung der Rohstoff-Korngröße, Ultraschallbehandlung und Verwendung des kommerziellen trifunktionellen Polyetherpolyols Lupranol® 3300 in Kombination mit Desmodur® L75 - die Löslichkeit von Lignin im Polyol sowie die thermische Stabilität der LPU-Coatings erhöht. Im Zuge der Syntheseoptimierungen konnte durch verkürzte Trocknungszeiten Energieeinsparung erzielt werden; zudem ließen sich dabei die eingesetzten Mengen kommerziell erhältlicher Chemikalien verringern; beide Einsparungen führten zu Kostenreduktion. Zugleich ließ sich so nicht nur der KL-Anteil im Polymer-Coating erhöhen: Durch eine optimierte wirtschaftliche Einstufensynthese ließ sich die Umsetzung dieser Vorgehensweise auch im Rahmen industrieller Anwendungen vereinfachen. Das Einbetten ausgewählter TPM-Farbstoffe (Kristallviolett und Brilliantgrün) in die LPU-Coatings durch blend formation führte nachweislich zu antimikrobieller Wirkung der Oberflächenbeschichtung, ohne dass die Oberflächenbeschaffenheit an Homogenität verlor. Die im Rahmen dieser Arbeit synthetisierten LPU-Coatings könnten zukünftig als Korrosionsschutz- und antimikrobielle-Beschichtungen ihre Anwendung finden, z. B. in der Landwirtschaft und im Bausektor.
Die im Rahmen der vorliegenden Arbeit gewonnen Erkenntnisse liefern einen Beitrag zur strukturellen Aufklärung des komplexen Biopolymers Lignin. Darüber hinaus stellen die Untersuchungen und Ergebnisse eine Grundlage für eine nachhaltige Herstellung von Lignin-basierten Polymerbeschichtungen dar, die in Zukunft immer mehr an Bedeutung gewinnen werden.
Renewable resources gain increasing interest as source for environmentally benign biomaterials, such as drug encapsulation/release compounds, and scaffolds for tissue engineering in regenerative medicine. Being the second largest naturally abundant polymer, the interest in lignin valorization for biomedical utilization is rapidly growing. Depending on resource and isolation procedure, lignin shows specific antioxidant and antimicrobial activity. Today, efforts in research and industry are directed toward lignin utilization as renewable macromolecular building block for the preparation of polymeric drug encapsulation and scaffold materials. Within the last five years, remarkable progress has been made in isolation, functionalization and modification of lignin and lignin-derived compounds. However, literature so far mainly focuses lignin-derived fuels, lubricants and resins. The purpose of this review is to summarize the current state of the art and to highlight the most important results in the field of lignin-based materials for potential use in biomedicine (reported in 2014–2018). Special focus is drawn on lignin-derived nanomaterials for drug encapsulation and release as well as lignin hybrid materials used as scaffolds for guided bone regeneration in stem cell-based therapies.
Renewable resources are gaining increasing interest as a source for environmentally benign biomaterials, such as drug encapsulation/release compounds, and scaffolds for tissue engineering in regenerative medicine. Being the second largest naturally abundant polymer, the interest in lignin valorization for biomedical utilization is rapidly growing. Depending on its resource and isolation procedure, lignin shows specific antioxidant and antimicrobial activity. Today, efforts in research and industry are directed toward lignin utilization as a renewable macromolecular building block for the preparation of polymeric drug encapsulation and scaffold materials. Within the last five years, remarkable progress has been made in isolation, functionalization and modification of lignin and lignin-derived compounds. However, the literature so far mainly focuses lignin-derived fuels, lubricants and resins. The purpose of this review is to summarize the current state of the art and to highlight the most important results in the field of lignin-based materials for potential use in biomedicine (reported in 2014⁻2018). Special focus is placed on lignin-derived nanomaterials for drug encapsulation and release as well as lignin hybrid materials used as scaffolds for guided bone regeneration in stem cell-based therapies.