Refine
H-BRS Bibliography
- yes (8)
Departments, institutes and facilities
Document Type
- Conference Object (4)
- Article (3)
- Preprint (1)
Language
- English (8)
Has Fulltext
- yes (8)
Keywords
- energy meteorology (2)
- Sahel zone (1)
- West Africa (1)
- aerosol (1)
- atmospheric aerosol (1)
- irradiance (1)
- photovoltaic (1)
- solar power (1)
Due to the policy goals for sustainable energy production, renewable energy plants such as photovoltaics are increasingly in use. The energy production from solar radiation depends strongly on atmospheric conditions. As the weather mostly changes, electrical power generation fluctuates, making technical planning and control of power grids to a complex problem.
Long-term variability of solar irradiance and its implications for photovoltaic power in West Africa
(2020)
West Africa is one of the least developed regions in the world regarding the energy availability and energy security. Located close to the equator West Africa receives high amounts of global horizontal irradiance (GHI). Thus, solar power and especially photovoltaic (PV) systems seem to be a promising solution to provide electricity with low environmental impact. To plan and to dimension a PV power system climatological data for global horizontal irradiance (GHI) and its variability need to be taken into account. However, ground based measurements of irradiances are not available continuously and cover only a few discrete locations.
Impact of atmospheric aerosols on photovoltaic energy production - Scenario for the Sahel zone
(2017)
Photovoltaic (PV) energy is one option to serve the rising global energy need with low environmental impact. PV is of particular interest for local energy solutions in developing countries prone to high solar insolation. In order to assess the PV potential of prospective sites, combining knowledge of the atmospheric state modulating solar radiation and the PV performance is necessary. The present study discusses the PV power as function of atmospheric aerosols in the Sahel zone for clear-sky-days. Daily yields for a polycrystalline silicon PV module are reduced by up to 48 % depending on the climatologically-relevant aerosol abundances.
Solar energy is one option to serve the rising global energy demand with low environmental impact. Building an energy system with a considerable share of solar power requires long-term investment and a careful investigation of potential sites. Therefore, understanding the impacts from varying regionally and locally determined meteorological conditions on solar energy production will influence energy yield projections.
Long-term variability of solar irradiance and its implications for photovoltaic power in West Africa
(2020)
This paper addresses long-term changes in solar irradiance for West Africa (3° N to 20° N and 20° W to 16° E) and its implications for photovoltaic power systems. Here we use satellite irradiance (Surface Solar Radiation Data Set-Heliosat, Edition 2.1, SARAH-2.1) to derive photovoltaic yields. Based on 35 years of data (1983–2017) the temporal and regional variability as well as long-term trends of global and direct horizontal irradiance are analyzed. Furthermore, at four locations a detailed time series analysis is undertaken. The dry and the wet season are considered separately.
Solar energy plants are one of the key options to serve the rising global energy need with low environmental impact. Aerosols reduce global solar radiation due to absorption and scattering and therewith solar energy yields. Depending on the aerosol composition and size distribution they reduce the direct component of the solar radiation and modify the direction of the diffuse component compared to standard atmospheric conditions without aerosols.
Atmospheric aerosols affect the power production of solar energy systems. Their impact depends on both the atmospheric conditions and the solar technology employed. By being a region with a lack in power production and prone to high solar insolation, West Africa shows high potential for the application of solar power systems. However, dust outbreaks, containing high aerosol loads, occur especially in the Sahel, located between the Saharan desert in the north and the Sudanian Savanna in the south. They might affect the whole region for several days with significant effects on power generation. This study investigates the impact of atmospheric aerosols on solar energy production for the example year 2006 making use of six well instrumented sites in West Africa. Two different solar power technologies, a photovoltaic (PV) and a parabolic through (PT) power plant, are considered. The daily reduction of solar power due to aerosols is determined over mostly clear-sky days in 2006 with a model chain combining radiative transfer and technology specific power generation. For mostly clear days the local daily reduction of PV power (at alternating current) (PVAC) and PT power (PTP) due to the presence of aerosols lies between 13 % and 22 % and between 22 % and 37 %, respectively. In March 2006 a major dust outbreak occurred, which serves as an example to investigate the impact of an aerosol extreme event on solar power. During the dust outbreak, daily reduction of PVAC and PTP of up to 79 % and 100 % occur with a mean reduction of 20 % to 40 % for PVAC and of 32 % to 71 % for PTP during the 12 days of the event.
This paper addresses long-term historical changes in solar irradiance in West Africa (3 to 20° N and 20° W to 16° E) and the implications for photovoltaic systems. Here, we use satellite irradiance (Surface Solar Radiation Data Set – Heliosat, Edition 2.1 – SARAH-2.1) and temperature data from a reanalysis (ERA5) to derive photovoltaic yields. Based on 35 years of data (1983–2017), the temporal and regional variability as well as long-term trends in global and direct horizontal irradiance are analyzed. Furthermore, a detailed time series analysis is undertaken at four locations. According to the high spatial resolution SARAH-2.1 data record (0.05°×0.05°), solar irradiance is largest (up to a 300 W m−2 daily average) in the Sahara and the Sahel zone with a positive trend (up to 5 W m−2 per decade) and a lower temporal variability (<75 W m−2 between 1983 and 2017 for daily averages). In contrast, the solar irradiance is lower in southern West Africa (between 200 W m−2 and 250 W m−2) with a negative trend (up to −5 W m−2 per decade) and a higher temporal variability (up to 150 W m−2). The positive trend in the north is mostly connected to the dry season, whereas the negative trend in the south occurs during the wet season. Both trends show 95 % significance. Photovoltaic (PV) yields show a strong meridional gradient with the lowest values of around 4 kWh kWp−1 in southern West Africa and values of more than 5.5 kWh kWp−1 in the Sahara and Sahel zone.