Refine
H-BRS Bibliography
- yes (4)
Departments, institutes and facilities
Document Type
- Conference Object (3)
- Preprint (1)
Language
- English (4)
Keywords
- Ego-Motion Estimation (1)
- SensorFusion (1)
- ToF Camera (1)
- ambiguity (1)
- annotation (1)
- emotion recognition (1)
- facial emotion recognition (1)
- language (1)
- oral history (1)
- sentiment analysis (1)
In computer vision, a larger effective receptive field (ERF) is associated with better performance. While attention natively supports global context, its quadratic complexity limits its applicability to tasks that benefit from high-resolution input. In this work, we extend Hyena, a convolution-based attention replacement, from causal sequences to bidirectional data and two-dimensional image space. We scale Hyena’s convolution kernels beyond the feature map size, up to 191×191, to maximize ERF while maintaining sub-quadratic complexity in the number of pixels. We integrate our two-dimensional Hyena, HyenaPixel, and bidirectional Hyena into the MetaFormer framework. For image categorization, HyenaPixel and bidirectional Hyena achieve a competitive ImageNet-1k top-1 accuracy of 84.9% and 85.2%, respectively, with no additional training data, while outperforming other convolutional and large-kernel networks. Combining HyenaPixel with attention further improves accuracy. We attribute the success of bidirectional Hyena to learning the data-dependent geometric arrangement of pixels without a fixed neighborhood definition. Experimental results on downstream tasks suggest that HyenaPixel with large filters and a fixed neighborhood leads to better localization performance.
In vision tasks, a larger effective receptive field (ERF) is associated with better performance. While attention natively supports global context, convolution requires multiple stacked layers and a hierarchical structure for large context. In this work, we extend Hyena, a convolution-based attention replacement, from causal sequences to the non-causal two-dimensional image space. We scale the Hyena convolution kernels beyond the feature map size up to 191$\times$191 to maximize the ERF while maintaining sub-quadratic complexity in the number of pixels. We integrate our two-dimensional Hyena, HyenaPixel, and bidirectional Hyena into the MetaFormer framework. For image categorization, HyenaPixel and bidirectional Hyena achieve a competitive ImageNet-1k top-1 accuracy of 83.0% and 83.5%, respectively, while outperforming other large-kernel networks. Combining HyenaPixel with attention further increases accuracy to 83.6%. We attribute the success of attention to the lack of spatial bias in later stages and support this finding with bidirectional Hyena.
For research in audiovisual interview archives often it is not only of interest what is said but also how. Sentiment analysis and emotion recognition can help capture, categorize and make these different facets searchable. In particular, for oral history archives, such indexing technologies can be of great interest. These technologies can help understand the role of emotions in historical remembering. However, humans often perceive sentiments and emotions ambiguously and subjectively. Moreover, oral history interviews have multi-layered levels of complex, sometimes contradictory, sometimes very subtle facets of emotions. Therefore, the question arises of the chance machines and humans have capturing and assigning these into predefined categories. This paper investigates the ambiguity in human perception of emotions and sentiment in German oral history interviews and the impact on machine learning systems. Our experiments reveal substantial differences in human perception for different emotions. Furthermore, we report from ongoing machine learning experiments with different modalities. We show that the human perceptual ambiguity and other challenges, such as class imbalance and lack of training data, currently limit the opportunities of these technologies for oral history archives. Nonetheless, our work uncovers promising observations and possibilities for further research.
This paper presents an approach to estimate theego-motion of a robot while moving. The employed sensor is aTime-of-Flight (ToF) camera, the SR3000 from Mesa Imaging.ToF cameras provide depth and reflectance data of the scene athigh frame rates.The proposed method utilizes the coherence of depth andreflectance data of ToF cameras by detecting image features onreflectance data and estimating the motion on depth data. Themotion estimate of the camera is fused with inertial measure-ments to gain higher accuracy and robustness.The result of the algorithm is benchmarked against referenceposes determined by matching accurate 2D range scans. Theevaluation shows that fusing the pose estimate with the datafromthe IMU improves the accuracy and robustness of the motionestimate against distorted measurements from the sensor.