Refine
H-BRS Bibliography
- yes (10)
Departments, institutes and facilities
Document Type
- Article (8)
- Doctoral Thesis (1)
- Report (1)
Keywords
- Ion viscosity (2)
- Complex modulus (1)
- Curing behavior (1)
- Curing kinetics (1)
- Degree of conversion (1)
- Dental composites (1)
- Dental resin (1)
- Depth Of Cure (1)
- Dielectric analysis (1)
- Dielectric analysis (DEA) (1)
This study presents a microindentation system which allows spatially resolved local as well as bulk viscoelastic material information to be obtained within one instrument. The microindentation method was merged with dynamic mechanical analysis (DMA) for a tungsten cone indenter. Three tungsten cone indenters were investigated: tungsten electrode, tungsten electrode + 2% lanthanum, and tungsten electrode + rare earth elements. Only the tungsten electrode + 2% lanthanum indenter showed the sinusoidal response, and its geometry remained unaffected by the repeated indentations. Complex moduli obtained from dynamic microindentation for high-density polyethylene, polybutylene terephthalate, polycarbonate, and thermoplastic polyurethane are in agreement with the literature. Additionally, by implementing a specially developed x-y-stage, this study showed that dynamic microindentation with a tungsten cone indenter was an adequate method to determine spatially resolved local viscoelastic surface properties.
During the last 50 years, a broad range of visible light curing resin based composites (VLC RBC) was developed for restorative applications in dentistry. Correspondingly, the technologies of light curing units (LCU) have changed from UV to visible blue light, and there from quartz tungsten halogen over plasma arc to LED LCUs increasing their light intensity significantly. In this thesis, the influence of the curing conditions in terms of irradiance, exposure time and irradiance distribution of LCU on reaction kinetics as well as corresponding mechanical and viscoelastic properties were investigated.