Refine
Department, Institute
Document Type
- Conference Object (18)
- Article (6)
- Preprint (1)
Year of publication
Keywords
- foveated rendering (3)
- Ray Tracing (2)
- Rendering (2)
- eye-tracking (2)
- CUDA (1)
- Computer Graphics (1)
- Computer graphics (1)
- Edutainment (1)
- Eye Tracking (1)
- Filtering (1)
We present an analysis of eye tracking data produced during a quality-focused user study of our own foveated ray tracing method. Generally, foveated rendering serves the purpose of adapting actual rendering methods to a user’s gaze. This leads to performance improvements which also allow for the use of methods like ray tracing, which would be computationally too expensive otherwise, in fields like virtual reality (VR), where high rendering performance is important to achieve immersion, or fields like scientific and information visualization, where large amounts of data may hinder real-time rendering capabilities. We provide an overview of our rendering system itself as well as information about the data we collected during the user study, based on fixation tasks to be fulfilled during flights through virtual scenes displayed on a head-mounted display (HMD). We analyze the tracking data regarding its precision and take a closer look at the accuracy achieved by participants when focusing the fixation targets. This information is then put into context with the quality ratings given by the users, leading to a surprising relation between fixation accuracy and quality ratings.
Most Virtual Reality (VR) applications use rendering methods which implement local illumination models, simulating only direct interaction of light with 3D objects. They do not take into account the energy exchange between the objects themselves, making the resulting images look non-optimal. The main reason for this is the simulation of global illumination having a high computational complexity, decreasing the frame rate extremely. As a result this makes for example user interaction quite challenging. One way to decrease the time of image generation using rendering methods which implement global illumination models is to involve additional compute nodes in the process of image creation, distribute the rendering subtasks among these and then collate the results of the subtasks into a single image. Such a strategy is called distributed rendering. In this paper we introduce a software interface which gives a recommendation how the distributed rendering approach may be integrated into VR frameworks to achieve lower generation time of high quality, realistic images. The interface describes a client-server architecture which realizes the communication between visualization and compute nodes including data and rendering subtask distribution and may be used for the implementation of different load-balancing methods. We show an example of the implementation of the proposed interface in the context of realistic rendering of buildings for decisions on interior options.
We present the extensible post processing framework GrIP, usable for experimenting with screen space-based graphics algorithms in arbitrary applications. The user can easily implement new ideas as well as add known operators as components to existing ones. Through a well-defined interface, operators are realized as plugins that are loaded at run-time. Operators can be combined by defining a post processing graph (PPG) using a specific XML-format where nodes are the operators and edges define their dependencies. User-modifiable parameters can be manipulated through an automatically generated GUI. In this paper we describe our approach, show some example effects and give performance numbers for some of them.
We propose a high-performance GPU implementation of Ray Histogram Fusion (RHF), a denoising method for stochastic global illumination rendering. Based on the CPU implementation of the original algorithm, we present a naive GPU implementation and the necessary optimization steps. Eventually, we show that our optimizations increase the performance of RHF by two orders of magnitude when compared to the original CPU implementation and one order of magnitude compared to the naive GPU implementation. We show how the quality for identical rendering times relates to unfiltered path tracing and how much time is needed to achieve identical quality when compared to an unfiltered path traced result. Finally, we summarize our work and describe possible future applications and research based on this.
Head-mounted displays (HMDs) with integrated eye trackers have opened up a new realm for gaze-contingent rendering. The accurate estimation of gaze depth is essential when modeling the optical capabilities of the eye. Most recently multifocal displays are gaining importance, requiring focus estimates to control displays or lenses. Deriving the gaze depth solely by sampling the scene's depth at the point-of-regard fails for complex or thin objects as eye tracking is suffering from inaccuracies. Gaze depth measures using the eye's vergence only provide an accurate depth estimate for the first meter. In this work, we combine vergence measures and multiple depth measures into feature sets. This data is used to train a regression model to deliver improved estimates. We present a study showing that using multiple features allows for an accurate estimation of the focused depth (MSE<0.1m) over a wide range (first 6m).
Phase Space Rendering
(2007)
We present our work on phase space rendering. Every radiance sample in space has a location and a direction from which it is received. These degrees of freedom make up a phase space. The rendering problem of generating a discrete image from single radiance values is reduced to reconstruct a continuous radiance function from sparse samples in its phase space. The problem of reconstruction in a sparsely sampled space is solved by utilizing scattered data interpolation (SDI) methods. We provide numerical and visual evaluations of experiments with three SDI methods.
We present a graph-based framework for post processing filters, called GrIP, providing the possibility of arranging and connecting compatible filters in a directed, acyclic graph for realtime image manipulation. This means that the construction of whole filter graphs is possible through an external interface, avoiding the necessity of a recompilation cycle after changes in post processing. Filter graphs are implemented as XML files containing a collection of filter nodes with their parameters as well as linkage (dependency) information. Implemented methods include (but are not restricted to) depth of field, depth darkening and an implementation of screen space shadows, all applicable in real-time, with manipulable parameterizations.
Real-Time Simulation of Camera Errors and Their Effect on Some Basic Robotic Vision Algorithms
(2013)
We present a real-time approximate simulation of some camera errors and the effects these errors have on some common computer vision algorithms for robots. The simulation uses a software framework for real-time post processing of image data. We analyse the performance of some basic algorithms for robotic vision when adding modifications to images due to camera errors. The result of each algorithm / error combination is presented. This simulation is useful to tune robotic algorithms to make them more robust to imperfections of real cameras.
We present fast complete rebuild strategies, as well as adapted intelligent local update strategies for acceleration data structures for interactive ray tracing environments. Both approaches can be combined. Although the proposed strategies could be used with other data structures and architectures as well, they are currently tailored to the Bounding Interval Hierarchy on the Cell chip.
Head-mounted displays with dense pixel arrays used for virtual reality applications require high frame rates and low latency rendering. This forms a challenging use case for any rendering approach. In addition to its ability of generating realistic images, ray tracing offers a number of distinct advantages, but has been held back mainly by its performance. In this paper, we present an approach that significantly improves image generation performance of ray tracing. This is done by combining foveated rendering based on eye tracking with reprojection rendering using previous frames in order to drastically reduce the number of new image samples per frame. To reproject samples a coarse geometry is reconstructed from a G-Buffer. Possible errors introduced by this reprojection as well as parts that are critical to the perception are scheduled for resampling. Additionally, a coarse color buffer is used to provide an initial image, refined smoothly by more samples were needed. Evaluations and user tests show that our method achieves real-time frame rates, while visual differences compared to fully rendered images are hardly perceivable. As a result, we can ray trace non-trivial static scenes for the Oculus DK2 HMD at 1182 × 1464 per eye within the the VSync limits without perceived visual differences.
We present a system which allows for guiding the image quality in global illumination (GI) methods by user-specified regions of interest (ROIs). This is done with either a tracked interaction device or a mouse-based method, making it possible to create a visualization with varying convergence rates throughout one image towards a GI solution. To achieve this, we introduce a scheduling approach based on Sparse Matrix Compression (SMC) for efficient generation and distribution of rendering tasks on the GPU that allows for altering the sampling density over the image plane. Moreover, we present a prototypical approach for filtering the newly, possibly sparse samples to a final image. Finally, we show how large-scale display systems can benefit from rendering with ROIs.
Human beings spend much time under the influence of artificial lighting. Often, it is beneficial to adapt lighting to the task, as well as the user’s mental and physical constitution and well-being. This formulates new requirements for lighting - human-centric lighting - and drives a need for new light control methods in interior spaces. In this paper we present a holistic system that provides a novel approach to human-centric lighting by introducing simulation methods into interactive light control, to adapt the lighting based on the user's needs. We look at a simulation and evaluation platform that uses interactive stochastic spectral rendering methods to simulate light sources, allowing for their interactive adjustment and adaption.
In contrast to projection-based systems, large, high resolution multi-display systems offer a high pixel density on a large visualization area. This enables users to step up to the displays and see a small but highly detailed area. If the users move back a few steps they don't perceive details at pixel level but will instead get an overview of the whole visualization. Rendering techniques for design evaluation and review or for visualizing large volume data (e.g. Big Data applications) often use computationally expensive ray-based methods. Due to the number of pixels and the amount of data, these methods often do not achieve interactive frame rates.
A view direction based (VDB) rendering technique renders the user's central field of view in high quality whereas the surrounding is rendered with a level-of-detail approach depending on the distance to the user's central field of view. This approach mimics the physiology of the human eye and conserves the advantage of highly detailed information when standing close to the multi-display system as well as the general overview of the whole scene. In this paper we propose a prototype implementation and evaluation of a focus-based rendering technique based on a hybrid ray tracing/sparse voxel octree rendering approach.
The simulation of global illumination for Virtual Reality (VR) applications is a challenging process. The main reason for this is the high computational complexity of the Monte Carlo integration which makes sufficient frame rates hard to achieve. It is even more challenging to adopt this process for large, high-resolution displays (LHRD), because the resolution of an image to be generated becomes huge compared to a single display. One possibility to decrease the time of image rendering without worsening image quality is to involve additional computational nodes. The process of image creation has to be split into multiple rendering-tasks which may be computed independently. The resulting image data has to be conveyed to the display nodes where it is combined and passed to corresponding output devices. In this paper we introduce an extended version of our software interface which allows to integrate a flexible distributed rendering approach into VR frameworks, thus enabling high-quality realistic image generation on LHRDs. The interface describes a software architecture which realizes the communication between manager, computational and display nodes including rendering subtasks and data distribution and allows for the implementation of different load-balancing methods.
This presentation gives an overview of current research in the area of high quality rendering and visualization at the Institute of Visual Computing (IVC). Our research facility has some unique software and hardware installations of which we will describe a large, ultra- high resolution (72 megapixel) video wall in this presentation.
Modern Monte-Carlo-based rendering systems still suffer from the computational complexity involved in the generation of noise-free images, making it challenging to synthesize interactive previews. We present a framework suited for rendering such previews of static scenes using a caching technique that builds upon a linkless octree. Our approach allows for memory-efficient storage and constant-time lookup to cache diffuse illumination at multiple hitpoints along the traced paths. Non-diffuse surfaces are dealt with in a hybrid way in order to reconstruct view-dependent illumination while maintaining interactive frame rates. By evaluating the visual fidelity against ground truth sequences and by benchmarking, we show that our approach compares well to low-noise path traced results, but with a greatly reduced computational complexity allowing for interactive frame rates. This way, our caching technique provides a useful tool for global illumination previews and multi-view rendering.
Advances in computer graphics enable us to create digital images of astonishing complexity and realism. However, processing resources are still a limiting factor. Hence, many costly but desirable aspects of realism are often not accounted for, including global illumination, accurate depth of field and motion blur, spectral effects, etc. especially in real‐time rendering. At the same time, there is a strong trend towards more pixels per display due to larger displays, higher pixel densities or larger fields of view. Further observable trends in current display technology include more bits per pixel (high dynamic range, wider color gamut/fidelity), increasing refresh rates (better motion depiction), and an increasing number of displayed views per pixel (stereo, multi‐view, all the way to holographic or lightfield displays). These developments cause significant unsolved technical challenges due to aspects such as limited compute power and bandwidth. Fortunately, the human visual system has certain limitations, which mean that providing the highest possible visual quality is not always necessary. In this report, we present the key research and models that exploit the limitations of perception to tackle visual quality and workload alike. Moreover, we present the open problems and promising future research targeting the question of how we can minimize the effort to compute and display only the necessary pixels while still offering a user full visual experience.
In recent years, a variety of methods have been introduced to exploit the decrease in visual acuity of peripheral vision, known as foveated rendering. As more and more computationally involved shading is requested and display resolutions increase, maintaining low latencies is challenging when rendering in a virtual reality context. Here, foveated rendering is a promising approach for reducing the number of shaded samples. However, besides the reduction of the visual acuity, the eye is an optical system, filtering radiance through lenses. The lenses create depth-of-field (DoF) effects when accommodated to objects at varying distances. The central idea of this article is to exploit these effects as a filtering method to conceal rendering artifacts. To showcase the potential of such filters, we present a foveated rendering system, tightly integrated with a gaze-contingent DoF filter. Besides presenting benchmarks of the DoF and rendering pipeline, we carried out a perceptual study, showing that rendering quality is rated almost on par with full rendering when using DoF in our foveated mode, while shaded samples are reduced by more than 69%.
Modern Monte-Carlo-based rendering systems still suffer from the computational complexity involved in the generation of noise-free images, making it challenging to synthesize interactive previews. We present a framework suited for rendering such previews ofstatic scenes using a caching technique that builds upon a linkless octree. Our approach allows for memory-efficient storage and constant-time lookup to cache diffuse illumination at multiple hitpoints along the traced paths. Non-diffuse surfaces are dealt with in a hybrid way in order to reconstruct view-dependent illumination while maintaining interactive frame rates. By evaluating the visual fidelity against ground truth sequences and by benchmarking, we show that our approach compares well to low-noise path traced results, but with a greatly reduced computational complexity allowing for interactive frame rates. This way, our caching technique provides a useful tool for global illumination previews and multi-view rendering.
Rendering techniques for design evaluation and review or for visualizing large volume data often use computationally expensive ray-based methods. Due to the number of pixels and the amount of data, these methods often do not achieve interactive frame rates. A view direction based rendering technique renders the users central field of view in high quality whereas the surrounding is rendered with a level of detail approach depending on the distance to the users central field of view thus giving the opportunity to increase rendering efficiency. We propose a prototype implementation and evaluation of a focus-based rendering technique based on a hybrid ray tracing/sparse voxel octree rendering approach.
Modern Monte-Carlo-based rendering systems still suffer from the computational complexity involved in the generation of noise-free images, making it challenging to synthesize interactive previews. We present a framework suited for rendering such previews of static scenes using a caching technique that builds upon a linkless octree. Our approach allows for memory-efficient storage and constant-time lookup to cache diffuse illumination at multiple hitpoints along the traced paths. Non-diffuse surfaces are dealt with in a hybrid way in order to reconstruct view-dependent illumination while maintaining interactive frame rates. By evaluating the visual fidelity against ground truth sequences and by benchmarking, we show that our approach compares well to low-noise path-traced results, but with a greatly reduced computational complexity, allowing for interactive frame rates. This way, our caching technique provides a useful tool for global illumination previews and multi-view rendering.
In this paper we present the steps towards a well-designed concept of a 5VR6 system for school experiments in scientific domains like physics, biology and chemistry. The steps include the analysis of system requirements in general, the analysis of school experiments and the analysis of input and output devices demands. Based on the results of these steps we show a taxonomy of school experiments and provide a comparison between several currently available devices which can be used for building such a system. We also compare the advantages and shortcomings of 5VR6 and 5AR6 systems in general to show why, in our opinion, 5VR6 systems are better suited for school-use.
This work presents the analysis of data recorded by an eye tracking device in the course of evaluating a foveated rendering approach for head-mounted displays (HMDs). Foveated rendering methods adapt the image synthesis process to the user’s gaze and exploiting the human visual system’s limitations to increase rendering performance. Especially, foveated rendering has great potential when certain requirements have to be fulfilled, like low-latency rendering to cope with high display refresh rates. This is crucial for virtual reality (VR), as a high level of immersion, which can only be achieved with high rendering performance and also helps to reduce nausea, is an important factor in this field. We put things in context by first providing basic information about our rendering system, followed by a description of the user study and the collected data. This data stems from fixation tasks that subjects had to perform while being shown fly-through sequences of virtual scenes on an HMD. These fixation tasks consisted of a combination of various scenes and fixation modes. Besides static fixation targets, moving tar- gets on randomized paths as well as a free focus mode were tested. Using this data, we estimate the precision of the utilized eye tracker and analyze the participants’ accuracy in focusing the displayed fixation targets. Here, we also take a look at eccentricity-dependent quality ratings. Comparing this information with the users’ quality ratings given for the displayed sequences then reveals an interesting connection between fixation modes, fixation accuracy and quality ratings.