Refine
H-BRS Bibliography
- yes (5)
Departments, institutes and facilities
Document Type
- Conference Object (3)
- Article (2)
Language
- English (5)
Has Fulltext
- yes (5)
Keywords
- energy meteorology (2)
- Sahel zone (1)
- West Africa (1)
- aerosol (1)
- atmospheric aerosol (1)
- irradiance (1)
- photovoltaic (1)
- solar power (1)
Impact of atmospheric aerosols on photovoltaic energy production - Scenario for the Sahel zone
(2017)
Photovoltaic (PV) energy is one option to serve the rising global energy need with low environmental impact. PV is of particular interest for local energy solutions in developing countries prone to high solar insolation. In order to assess the PV potential of prospective sites, combining knowledge of the atmospheric state modulating solar radiation and the PV performance is necessary. The present study discusses the PV power as function of atmospheric aerosols in the Sahel zone for clear-sky-days. Daily yields for a polycrystalline silicon PV module are reduced by up to 48 % depending on the climatologically-relevant aerosol abundances.
Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data. Hence the generation of robust reviewed global irradiance data is an essential contribution for the energy transition.
Solar energy plants are one of the key options to serve the rising global energy need with low environmental impact. Aerosols reduce global solar radiation due to absorption and scattering and therewith solar energy yields. Depending on the aerosol composition and size distribution they reduce the direct component of the solar radiation and modify the direction of the diffuse component compared to standard atmospheric conditions without aerosols.
Reliable and regional differentiated power forecasts are required to guarantee an efficient and economic energy transition towards renewable energies. Amongst other renewable energy technologies, e.g. wind mills, photovoltaic (PV) systems are an essential component of this transition being cost-efficient and simply to install. Reliable power forecasts are however required for a grid integration of photovoltaic systems, which among other data requires high-resolution spatio-temporal global irradiance data.
Atmospheric aerosols affect the power production of solar energy systems. Their impact depends on both the atmospheric conditions and the solar technology employed. By being a region with a lack in power production and prone to high solar insolation, West Africa shows high potential for the application of solar power systems. However, dust outbreaks, containing high aerosol loads, occur especially in the Sahel, located between the Saharan desert in the north and the Sudanian Savanna in the south. They might affect the whole region for several days with significant effects on power generation. This study investigates the impact of atmospheric aerosols on solar energy production for the example year 2006 making use of six well instrumented sites in West Africa. Two different solar power technologies, a photovoltaic (PV) and a parabolic through (PT) power plant, are considered. The daily reduction of solar power due to aerosols is determined over mostly clear-sky days in 2006 with a model chain combining radiative transfer and technology specific power generation. For mostly clear days the local daily reduction of PV power (at alternating current) (PVAC) and PT power (PTP) due to the presence of aerosols lies between 13 % and 22 % and between 22 % and 37 %, respectively. In March 2006 a major dust outbreak occurred, which serves as an example to investigate the impact of an aerosol extreme event on solar power. During the dust outbreak, daily reduction of PVAC and PTP of up to 79 % and 100 % occur with a mean reduction of 20 % to 40 % for PVAC and of 32 % to 71 % for PTP during the 12 days of the event.