Refine
H-BRS Bibliography
- yes (3)
Departments, institutes and facilities
Document Type
- Conference Object (2)
- Article (1)
Language
- English (3)
Has Fulltext
- no (3)
Alkaline methanol oxidation is an important electrochemical process in the design of efficient fuel cells. Typically, a system of ordinary differential equations is used to model the kinetics of this process. The fitting of the parameters of the underlying mathematical model is performed on the basis of different types of experiments, characterizing the fuel cell. In this paper, we describe generic methods for creation of a mathematical model of electrochemical kinetics from a given reaction network, as well as for identification of parameters of this model. We also describe methods for model reduction, based on a combination of steady-state and dynamical descriptions of the process. The methods are tested on a range of experiments, including different concentrations of the reagents and different voltage range.
It is shown that the electrochemical kinetics of alkaline methanol oxidation can be reduced by setting certain fast reactions contained in it to a steady state. As a result, the underlying system of Ordinary Differential Equations (ODE) is transformed to a system of Differential-Algebraic Equations (DAE). We measure the precision characteristics of such transformation and discuss the consequences of the obtained model reduction.