Refine
H-BRS Bibliography
- yes (1)
Departments, institutes and facilities
Document Type
- Preprint (1)
Year of publication
- 2021 (1)
Language
- English (1)
Has Fulltext
- no (1)
Keywords
It has been well proved that deep networks are efficient at extracting features from a given (source) labeled dataset. However, it is not always the case that they can generalize well to other (target) datasets which very often have a different underlying distribution. In this report, we evaluate four different domain adaptation techniques for image classification tasks: DeepCORAL, DeepDomainConfusion, CDAN and CDAN+E. These techniques are unsupervised given that the target dataset dopes not carry any labels during training phase. We evaluate model performance on the office-31 dataset. A link to the github repository of this report can be found here: https://github.com/agrija9/Deep-Unsupervised-Domain-Adaptation.