Refine
H-BRS Bibliography
- yes (6)
Departments, institutes and facilities
Document Type
- Article (4)
- Conference Object (2)
Language
- English (6)
Keywords
- West Africa (4)
- Global horizontal irradiance (3)
- Forecasting (2)
- Ghana (2)
- WRF-Solar (2)
- Ghanaian health sector (1)
- LSTM (1)
- Reanalysis (1)
- SARIMA (1)
- Satellite (1)
Estimates of global horizontal irradiance (GHI) from reanalysis and satellite-based data are the most important information for the design and monitoring of PV systems in Africa, but their quality is unknown due to the lack of in situ measurements. In this study, we evaluate the performance of hourly GHI from state-of-the-art reanalysis and satellite-based products (ERA5, CAMS, MERRA-2, and SARAH-2) with 37 quality-controlled in situ measurements from novel meteorological networks established in Burkina Faso and Ghana under different weather conditions for the year 2020. The effects of clouds and aerosols are also considered in the analysis by using common performance measures for the main quality attributes and a new overall performance value for the joint assessment. The results show that satellite data performs better than reanalysis data under different atmospheric conditions. Nevertheless, both data sources exhibit significant bias of more than 150 W/m2 in terms of RMSE under cloudy skies compared to clear skies. The new measure of overall performance clearly shows that the hourly GHI derived from CAMS and SARAH-2 could serve as viable alternative data for assessing solar energy in the different climatic zones of West Africa.
Accurate forecasting of solar irradiance is crucial for the integration of solar energy into the power grid, power system planning, and the operation of solar power plants. The Weather Research and Forecasting (WRF) model, with its solar radiation (WRF-Solar) extension, has been used to forecast solar irradiance in various regions worldwide. However, the application of the WRF-Solar model for global horizontal irradiance (GHI) forecasting in West Africa, specifically in Ghana, has not been studied. This study aims to evaluate the performance of the WRF-Solar model for GHI forecasting in Ghana, focusing on 3 health centers (Kologo, Kumasi and Akwatia) for the year 2021. We applied a two one-way nested domain (D1=15 km and D2=3 km) to investigate the ability of the WRF solar model to forecast GHI up to 72 hours in advance under different atmospheric conditions. The initial and lateral boundary conditions were taken from the ECMWF operational forecasts. In addition, the optical aerosol depth (AOD) data at 550 nm from the Copernicus Atmosphere Monitoring Service (CAMS) were considered. The study uses statistical metrics such as mean bias error (MBE), root mean square error (RMSE), to evaluate the performance of the WRF-Solar model with the observational data obtained from automatic weather stations in the three health centers in Ghana. The results of this study will contribute to the understanding of the capabilities and limitations of the WRF-Solar model for forecasting GHI in West Africa, particularly in Ghana, and provide valuable information for stakeholders involved in solar energy generation and grid integration towards optimized management of in the region.
Accurate global horizontal irradiance (GHI) forecasting is critical for integrating solar energy into the power grid and operating solar power plants. The Weather Research and Forecasting model with its solar radiation extension (WRF-Solar) has been used to forecast solar irradiance in different regions around the world. However, the application of the WRF-Solar model to the prediction of GHI in West Africa, particularly Ghana, has not yet been investigated. The aim of this study is to evaluate the performance of the WRF-Solar model for predicting GHI in Ghana, focusing on three automatic weather stations (Akwatia, Kumasi and Kologo) for the year 2021. We used two one-way nested domains (D1 = 15 km and D2 = 3 km) to investigate the ability of the fully coupled WRF-Solar model to forecast GHI up to 72-hour ahead under different atmospheric conditions. The initial and lateral boundary conditions were taken from the ECMWF high-resolution operational forecasts. Our findings reveal that the WRF-Solar model performs better under clear skies than cloudy skies. Under clear skies, Kologo performed best in predicting 72-hour GHI, with a first day nRMSE of 9.62 %. However, forecasting GHI under cloudy skies at all three sites had significant uncertainties. Additionally, WRF-Solar model is able to reproduce the observed GHI diurnal cycle under high AOD conditions in most of the selected days. This study enhances the understanding of the WRF-Solar model’s capabilities and limitations for GHI forecasting in West Africa, particularly in Ghana. The findings provide valuable information for stakeholders involved in solar energy generation and grid integration towards optimized management in the region.
Ghana suffers from frequent power outages, which can be compensated by off-grid energy solutions. Photovoltaic-hybrid systems become more and more important for rural electrification due to their potential to offer a clean and cost-effective energy supply. However, uncertainties related to the prediction of electrical loads and solar irradiance result in inefficient system control and can lead to an unstable electricity supply, which is vital for the high reliability required for applications within the health sector. Model predictive control (MPC) algorithms present a viable option to tackle those uncertainties compared to rule-based methods, but strongly rely on the quality of the forecasts. This study tests and evaluates (a) a seasonal autoregressive integrated moving average (SARIMA) algorithm, (b) an incremental linear regression (ILR) algorithm, (c) a long short-term memory (LSTM) model, and (d) a customized statistical approach for electrical load forecasting on real load data of a Ghanaian health facility, considering initially limited knowledge of load and pattern changes through the implementation of incremental learning. The correlation of the electrical load with exogenous variables was determined to map out possible enhancements within the algorithms. Results show that all algorithms show high accuracies with a median normalized root mean square error (nRMSE) <0.1 and differing robustness towards load-shifting events, gradients, and noise. While the SARIMA algorithm and the linear regression model show extreme error outliers of nRMSE >1, methods via the LSTM model and the customized statistical approaches perform better with a median nRMSE of 0.061 and stable error distribution with a maximum nRMSE of <0.255. The conclusion of this study is a favoring towards the LSTM model and the statistical approach, with regard to MPC applications within photovoltaic-hybrid system solutions in the Ghanaian health sector.
Intention: Within the research project EnerSHelF (Energy-Self-Sufficiency for Health Facilities in Ghana), i. a. energy-meteorological and load-related measurement data are collected, for which an overview of the availability is to be presented on a poster.
Context: In Ghana, the total electricity consumed has almost doubled between 2008 and 2018 according to the Energy Commission of Ghana. This goes along with an unstable power grid, resulting in power outages whenever electricity consumption peaks. The blackouts called "dumsor" in Ghana, pose a severe burden to the healthcare sector. Innovative solutions are needed to reduce greenhouse gas emissions and improve energy and health access.