Refine
H-BRS Bibliography
- yes (5)
Departments, institutes and facilities
Document Type
Language
- English (5)
Has Fulltext
- no (5)
Keywords
- Inductive Logic Programming (2)
- Robotics (2)
- Explainable Machine Learning (1)
- Fault Detection & Diagnosis (1)
- Review (1)
The increasing complexity of tasks that are required to be executed by robots demands higher reliability of robotic platforms. For this, it is crucial for robot developers to consider fault diagnosis. In this study, a general non-intrusive fault diagnosis system for robotic platforms is proposed. A mini-PC is non-intrusively attached to a robot that is used to detect and diagnose faults. The health data and diagnosis produced by the mini-PC is then standardized and transmitted to a remote-PC. A storage device is also attached to the mini-PC for data logging of health data in case of loss of communication with the remote-PC. In this study, a hybrid fault diagnosis method is compared to consistency-based diagnosis (CBD), and CBD is selected to be deployed on the system. The proposed system is modular and can be deployed on different robotic platforms with minimum setup.
This work presents the preliminary research towards developing an adaptive tool for fault detection and diagnosis of distributed robotic systems, using explainable machine learning methods. Autonomous robots are complex systems that require high reliability in order to operate in different environments. Even more so, when considering distributed robotic systems, the task of fault detection and diagnosis becomes exponentially difficult.
To diagnose systems, models representing the behaviour under investigation need to be developed, and with distributed robotic systems generating large amount of data, machine learning becomes an attractive method of modelling especially because of its high performance. However, with current day methods such as artificial neural networks (ANNs), the issue of explainability arises where learnt models lack the ability to give explainable reasons behind their decisions.
This paper presents current trends in methods for data collection from distributed systems, inductive logic programming (ILP); an explainable machine learning method, and fault detection and diagnosis.
Autonomous mobile robots comprise of several hardware and software components. These components interact with each other continuously in order to achieve autonomity. Due to the complexity of such a task, a monumental responsibility is bestowed upon the developer to make sure that the robot is always operable. Hence, some means of detecting faults should be readily available. In this work, the aforementioned fault-detection system is a robotic black box (RBB) attached to the robot which acquires all the relevant measurements of the system that are needed to achieve a fault-free robot. Due to limited computational and memory resources on-board the RBB, a distributed diagnosis is proposed. That is, the fault diagnosis task (detection and isolation) is shared among an on-board component (the black box) and an off-board component (an external computer). The distribution of the diagnosis task allows for a non-intrusive method of detecting and diagnosing faults, in addition to the ability of remotely diagnosing a robot and potentially issuing a repair command. In addition to decomposing the diagnosis task and allowing remote diagnosability of the robot, another key feature of this work is the addition of expert human knowledge to aid in the fault detection process.