Refine
H-BRS Bibliography
- yes (6)
Departments, institutes and facilities
Document Type
- Doctoral Thesis (3)
- Master's Thesis (2)
- Study Thesis (1)
Has Fulltext
- no (6)
Keywords
- Adaptive mesh refinement (2)
- Gitter-Boltzmann-Methode (2)
- Aerodynamik (1)
- Benetzbarkeit (1)
- CAE metadata structures (1)
- Fluiddynamik (1)
- Geometry (1)
- High-performance computing (1)
- Kompressible Strömung (1)
- Kontaktwinkel (1)
In dieser Arbeit wird eine kompressible Semi-Lagrangesche Lattice-Boltzmann-Methode neu entwickelt und erprobt. Die Lattice-Boltzmann-Methode ist ein Verfahren zur numerischen Strömungssimulation, das auf einer Modellierung von Partikeldichten und deren Interaktion untereinander basiert. In ihrer Ursprungsform ist die Methode jedoch auf schwach kompressible Strömungen mit niedriger Machzahl beschränkt. Wesentliche Nachteile der bisherigen Versuche zur Erweiterung auf supersonische Strömungen sind entweder mangelhafte Stabilität der Verfahren, unpraktikabel große Geschwindigkeitssätze oder die Beschränktheit auf kleine Zeitschrittweiten. Als Alternative zu bisherigen Ansätzen wird in dieser Arbeit ein Semi-Lagrangescher Strömungsschritt eingesetzt. Semi-Lagrangesche Verfahren entkoppeln mittels Interpolation die Orts-, Zeit- und Geschwindigkeitsdiskretisierung der ursprünglichen Lattice-Boltzmann-Methode. Nach der Einleitung wird im zweiten und dritten Kapitel dieser Arbeit zunächst auf die Grundlagen und Prinzipien der Lattice-Boltzmann-Methode eingegangen sowie bisherige Ansätze zur Simulation kompressibler Strömungen aufgeführt. Im Anschluss wird die kompressible Semi-Lagrangesche Lattice-Boltzmann-Methode entwickelt und beschrieben. Die Erweiterung erfolgt im Wesentlichen durch die Verknüpfung der Methode mit geeigneten Gleichgewichtsfunktionen und Geschwindigkeitssätzen. Im vierten Kapitel der Arbeit werden neue Kubatur-basierte Geschwindigkeitssätze entwickelt und getestet, darunter ein D3Q45-Geschwindigkeitssatz zur Berechnung kompressibler Strömungen, der den Rechenaufwand gegenüber konventionellen Geschwindigkeitsdiskretisierungen erheblich verringert. Im fünften Kapitel der Arbeit werden zur Validierung Simulationen von eindimensionalen Stoßrohren, zweidimensionalen Riemann-Problemen und Stoß-Wirbel-Interaktionen durchgeführt. Im Anschluss zeigen Simulationen von dreidimensionalen, kompressiblen Taylor-Green-Wirbeln sowie von wandgebundenen Testfällen die Vorteile der Methode für kompressible Strömungssimulationen. Zu diesem Zweck werden die Überschallströmung um ein zweidimensionales NACA-0012-Profil und um eine dreidimensionale Kugel sowie eine supersonische Kanalströmung untersucht. Dem Simulationsteil folgt eine umfangreiche Diskussion der Semi-Lagrangeschen Lattice-Boltzmann-Methode im Vergleich zu anderen Methoden. Die Vorteile der Methode, wie vergleichsweise große Zeitschrittweiten, körperangepasste Netze und die Stabilität der Methode, werden hier herausgearbeitet.
Pseudopotential (PP)-basierte Lattice-Boltzmann-Methoden werden zunehmend für die Simulation von Mehrphasenströmungen eingesetzt. Da sie auf einem phänomenologischen Ansatz basieren, ist ihr Einsatz mit einem hohen Modellierungsaufwand verbunden. Zudem entstehen an den Phasengrenzen sogenannte Scheingeschwindigkeiten, welche Genauigkeit und numerische Stabilität beeinträchtigen. Daher werden PP-Modelle in dieser Arbeit um drei neue Aspekte erweitert. Erstens wird gezeigt, dass bei der Modellierung unterschiedlicher Kontaktwinkel mit gängigen Methoden in Kombination mit verbesserten Kräfteschemata Scheintröpfchen entstehen. Diese werden durch einen neuartigen Ansatz eliminiert, der auf zusätzlichen Randbedingungen für alle Wechselwirkungskräfte basiert. Diese Technik verhindert nicht nur das Auftreten der Scheintröpfchen, sondern erhöht auch die Stabilität in wandgebundenen Strömungen. Zweitens wird ein neuartiges Verfahren zur Reduktion von Scheingeschwindigkeiten eingeführt. Dabei wird die Diskretisierung der Interaktionskräfte erweitert und die zusätzlichen, freien Koeffizienten in Simulationen statischer Tropfen numerisch optimiert. Die resultierende Diskretisierung wurde in Simulationen stationärer und dynamischer Testfälle validiert, wobei Scheingeschwindigkeiten deutlich reduziert werden konnten. Drittens und letztens wurden die Diffusionseigenschaften in Mehrstoffsystemen detailliert untersucht, wobei eine kritische Abhängigkeit zwischen den makroskopischen Diffusionskoeffizienten und dem Kräfteschema aufgezeigt wird. Diese Analyse bildet die Grundlage für den Vergleich und die zukünftige Entwicklung neuer Potentialfunktionen (für Mehrstoffsysteme) und reduziert den Modellierungsaufwand.
In tree-based adaptive mesh refinement (AMR) we store refinement trees in the cells of an unstructured coarse mesh. This lets us combine the speed and simpler management of structured refinement trees with the more flexible mesh generation of the unstructured coarse mesh. But this creates a conflict between performance and geometrical accuracy. If we favor speed we reduce the cells in our coarse mesh and hence reduce the accuracy of our geometrical representation. If we want more accurate results we generate a finer coarse mesh and lose performance by managing more cells in our unstructured coarse mesh. To mitigate this conflict we present the prototype of an geometry description which we implement in an already existing library. With this description we build geometry adapted hexahedral refinement trees, which also support high-order curved boundary cells. We also present examples on how to use this description. Moreover, we test the speedup of this new algorithm compared with coarse meshes with different geometrical errors.
In (dynamic) adaptive mesh refinement (AMR) an input mesh is refined or coarsened to the need of the numerical application. This refinement happens with no respect to the originally meshed domain and is therefore limited to the geometrical accuracy of the original input mesh. We presented a novel approach to equip this input mesh with additional geometry information, to allow refinement and high-order cells based on the geometry of the original domain. We already showed a limited implementation of this algorithm. Now we evaluate this prototype with a numerical application and we prove its influence on the accuracy of certain numerical results. To be as practical as possible, we implement the ability to import meshes generated by Gmsh and equip them with the needed geometry information. Furthermore, we improve the mapping algorithm, which maps the geometry information of the boundary of a cell into the cell's volume. With these preliminary steps done, we use out new approach in a simulation of the advection of a concentration along the boundary of a sphere shell and past the boundary of a rotating cylinder. We evaluate the accuracy of our approach in comparison to the conventional refinement of cells to answer our research question: How does the performance and accuracy of the hexahedral curved domain AMR algorithm compare to linear AMR when solving the advection equation with the linear finite volume method? To answer this question, we show the influence of curved AMR on our simulation results and see, that it is even able to outperform far finer linear meshes in terms of accuracy. We also see that the current implementation of this approach is too slow for practical usage. We can therefore prove the benefits of curved AMR in certain, geometry-related application scenarios and show possible improvements to make it more feasible and practical in the future.
Modern engineering relies heavily on utilizing computer technologies. This is especially true for thermoplastic manufacturing, such as blow molding. A crucial milestone for digitalization is the continuous integration of data in unified or interoperable systems. While new simulation technologies are constantly developed, data management standards such as STEP fail at integrating them. On the other hand, industrial standards such as ”VMAP” manage to improve interoperability for Small and Medium-sized Enterprises. However, they do not provide Simulation Process and Data Management (SPDM) technologies. For SPDM integration of VMAP data, Ontology-Based Data Access is used to allow continuing the digital thread in custom semantic-based open-source solutions. An ontology of the database format (VMAP) was generated alongside an expandable knowledge graph of data access methods. A Python-based software architecture was developed, automatically using the semantic representations of database format and data access to query data and metadata within the VMAP file. The result is a software architecture template that can be adapted for other data standards and integrated into semantic data management systems. It allows semantic queries on simulation data down to element-wise resolution without integrating the whole model information. The architecture can instantiate a file in a knowledge graph, query a file’s metadatum and, in case it is not yet available, find a semantically represented process that allows the creation and instantiation of the required metadatum. See Figure 1. The results of this thesis can be expected to form a basis for semantic SPDM tools.
Bei der Entwicklung von Kunststoffbauteilen kommen in kontinuierlich zunehmendem Maße Simulationen zum Einsatz. Vor dem Hintergrund von steigenden Produktanforderungen als auch dem unausweichlichen Zwang zur Schonung von Ressourcen ist der erweiterte Einsatz von Simulationswerkzeugen wichtiger Teil des Lösungsweges. Zu den nutzbaren, aber in Bezug zu Realprozessen bisher wenig eingesetzten Methoden gehört die Molekulardynamik Simulation. Auf Grundlage dieser Methode können auf mikroskopischer Ebene die tatsächlichen physikalischen Abläufe, die bei der Verarbeitung von Kunststoffen im Prozess auftreten, sichtbar gemacht werden. In dieser Arbeit wird beleuchtet, wie Randbedingungen in Anlehnung an den Extrusionsblasformprozess den Werkstoff Polyethylen auf mikroskopischer Ebene beeinflussen. Hierzu wird ein mesoskopisches Modell (Coarse-Graining) zur Beschreibung des Polymers genutzt. Dieses Modell wird durch die Bestimmung von Materialkennwerten verifiziert. Es wird der uniaxiale Zugversuch auf der Mikroskala modelliert, um Größen wie beispielsweise Elastizitätsmodul, Streckspannung oder Querkontraktionszahl zu ermitteln. Ebenso werden thermische Kenngrößen, insbesondere zur Charakterisierung des Kristallisationsverhaltens, bestimmt. Ziel dieser Untersuchungen ist, Effekte, die bei dynamisch ablaufenden Dehnungs- bzw. Kristallisationsvorgängen stattfinden, mikroskopisch zu beobachten und zu quantifizieren. Die ermittelten Kennwerte liegen insbesondere für die thermischen Größen in dichter Nähe zu experimentellen Daten. Das Spannungs-Dehnungs Verhalten wird qualitativ mit guter Übereinstimmung mit dem realen Verhalten wiedergegeben. Die kurze Zeitskala, auf der sich die Simulationsmodelle befinden, hat jedoch mikromechanisch extremeres Verhalten zur Folge, als makroskopisch beobachtet wird. Durch Erweiterung der Modelle werden biaxiale Verstreckvorgänge, wie sie im Extrusionsblasformprozess beispielsweise während des Aufblasens des Vorformlings auftreten, nachgebildet. Die Betrachtung verschiedener Abkühlbedingungen, insbesondere unter Formzwang, ist in Anlehnung an den Realprozess weiterer Schwerpunkt der Untersuchungen. Die Analyse der biaxial verstreckten Modelle offenbart, dass Entschlaufungsvorgänge während des Verstreckens die weitere Entwicklung der Polymersysteme dominieren. Es gelingt, die Dynamik von Kristallisationsvorgängen in Abhängigkeit von Verstreckgrad und Abkühlbedingungen durch unterschiedliche Größen (Verteilung von Verschlaufungspunkten, lokale Orientierungen) zu quantifizieren. Die erzielten Resultate zeigen auf, dass es mittels vergröberten Molekulardynamik Simulationen möglich ist, das mikromechanische Verständnis von Vorgängen, die bei der Verarbeitung von Kunststoffen auftreten, signifikant zu erweitern.
During the development phase of plastic components, simulations are being used to an increasing extent. Against the background of product requirements and the inevitable necessity of conserving resources, the expanded use of simulation tools is an essential part of the solution. Among available methods, but so far underutilized with respect to real-life processes, is the molecular dynamics simulation. By the use of this method it is possible to visualize the physical processes occurring on the microscopic level, as e.g. those that arise during plastics processing. This thesis examines how boundary conditions, which mimic the extrusion blow molding process, affect the behavior of polyethylene on the microscopic level. A mesoscopic model (coarse-graining) is applied to describe the polymer. Initially, this model is verified by determining material properties. The uniaxial tensile test is modeled on the micro-scale to identify parameters such as the elastic modulus, yield stress, and Poisson’s ratio. Additionally, thermal properties, particularly those characterizing the crystallization behavior, are identified. The objective of these investigations is the microscopic observation and quantification of effects that occur during dynamic stretching and crystallization processes. The calculated properties show good agreement with the experimental data, especially regarding the thermal parameters. Qualitatively, the stress-strain behavior is reproduced in alignment with experimentally observed results. However, the short time scale of the simulation models leads to micromechanical behavior that is more extreme than what is monitored on a macroscopic level. By extending the simulation models, biaxial stretching processes are simulated. These stretching processes resemble the situation during the inflation of the parison in the extrusion blow molding process. The examination of various cooling conditions, particularly by the use of mold constraints, is another focus of the investigations. The analysis of the biaxially stretched simulations reveals that disentanglement processes during stretching dominate the further development of polymer systems. It is possible to quantify the dynamics of crystallization processes depending on the degree of stretching and cooling conditions through various parameters (distribution of entanglement points, local orientations). The results indicate that coarse-grained molecular dynamics simulations are able to significantly enhance the micromechanical understanding of local events occurring during plastic processing.