Refine
H-BRS Bibliography
- yes (7)
Departments, institutes and facilities
Document Type
- Master's Thesis (6)
- Bachelor Thesis (1)
Keywords
- 3D-Scanner (1)
- Alize (1)
- Batch Normalization (1)
- LDA (1)
- PLDA (1)
- SELU (1)
- Speaker identification (1)
- YOLO v3 (1)
- deep learning (1)
- i-vectors (1)
In der vorliegenden Arbeit wird ein Verfahren zur Segmentierung von Außenszenen und Terrain-Klassifkation entwickelt. Dazu werden 360 Grad-Laserscanner-Aufnahmen von Straßen, Gebäudefassaden und Waldwegen aufgenommen. Von diesen Aufnahmen werden verschiedene visuelle Repräsentationen in 2D erstellt. Dazu werden die Distanzinformationen und Winkelübergänge der Polarkoordinaten, die Remissionswerte und der Normalenvektor eingesetzt. Die Berechnung des Normalenvektors wird über ein modernes Verfahren mit einerniedrigen Laufzeit durchgeführt. Anschließend werden Oberflächeneigenschaften innerhalb einer Punktwolke analysiert und vier Klassen unterschieden: Untergrund, Vegetation, Hindernis und Himmel. Die Segmentierung und Klassifkation geschieht in einem Schritt. Dazuwird die Varianz auf den N ormalen über eine Filtermaske berechnet und ein Deskriptor erstellt. Der Deskriptor beinhaltet die Normalenvektoren und die Normalenvarianz fürdie x-, y- und z-Achse. Die Ergebnisse werden als Überblendung auf dem Remissionsbilddargestellt. Die Auswertung wird über eigens erstellte Ground-Truth-Daten vorgenommen. Dazu wird das Remissionsbild genutzt und der Ground-Truth mit verschiedenen Farben eingezeichnet. Die Klassifkationsergebnisse sind in Precision-Recall-Diagrammen dargestellt.
Robots integrated into a social environment with humans need the ability to locate persons in their surrounding area. This is also the case for the WelcomeBot which is developed at the Fraunhofer Institute IAIS. In the future, the robot should follow persons in the buildings and guide them to certain areas. Therefore, it needs the capability to detect and track a person in the environment. In this master thesis, an approach for fast and reliable tracking of a person via a mobile robotic platform is presented. Based on the investigation of different methods and sensors, a laser scanner and a camera are selected as the primary two sensors.
This work aims to create a natural language generation (NLG) base for further development of systems for automatic examination questions generation and automatic summarization in Hochschule Bonn-Rhein-Sieg and Fraunhofer IAIS, respectively. Nowadays both tasks are very relevant. The first can significantly simplify the university teachers' work and the second to be of assistance for a faster retrieval of knowledge from an excessively large amount of information that people often work with. We focus on the search for an efficient and robust approach to the controlled NLG problem. Therefore, though the initial idea of the project was the usage of the generative adversarial neural networks (GANs), we switched our attention to more robust and easily-controllable autoencoders. Thus, in this work we implement an autoencoder for unsupervised discovery of latent space representations of text, and show the ability of the system to generate new sentences based on this latent space. Apart from that, we apply Gaussian mixture techniques in order to obtain meaningful text clusters and thereby try to create a tool that would allow us to generate sentences relevant to the semantics of the Gaussian clusters, e.g. positive or negative reviews or examination questions on certain topic. The developed system is tested on several datasets and compared to GANs' performance.
Neural network based object detectors are able to automatize many difficult, tedious tasks. However, they are usually slow and/or require powerful hardware. One main reason is called Batch Normalization (BN) [1], which is an important method for building these detectors. Recent studies present a potential replacement called Self-normalizing Neural Network (SNN) [2], which at its core is a special activation function named Scaled Exponential Linear Unit (SELU). This replacement seems to have most of BNs benefits while requiring less computational power. Nonetheless, it is uncertain that SELU and neural network based detectors are compatible with one another. An evaluation of SELU incorporated networks would help clarify that uncertainty. Such evaluation is performed through series of tests on different neural networks. After the evaluation, it is concluded that, while indeed faster, SELU is still not as good as BN for building complex object detector networks.
This work extends the affordance-inspired robot control architecture introduced in the MACS project [35] and especially its approach to integrate symbolic planning systems given in [24] by providing methods to automated abstraction of affordances to high-level operators. It discusses how symbolic planning instances can be generated automatically based on these operators and introduces an instantiation method to execute the resulting plans. Preconditions and effects of agent behaviour are learned and represented in Gärdenfors conceptual spaces framework. Its notion of similarity is used to group behaviours to abstract operators based on the affordance-inspired, function-centred view on the environment. Ways on how the capabilities of conceptual spaces to map subsymbolic to symbolic representations to generate PDDL planning domains including affordance-based operators are discussed. During plan execution, affordance-based operators are instantiated by agent behaviour based on the situation directly before its execution. The current situation is compared to past ones and the behaviour that has been most successful in the past is applied. Execution failures can be repaired by action substitution. The concept of using contexts to dynamically change dimension salience as introduced by Gärdenfors is realized by using techniques from the field of feature selection. The approach is evaluated using a 3D simulation environment and implementations of several object manipulation behaviours.
In order to help journalists investigate inside large audiovisual archives, as maintained by news broadcast agencies, the multimedia data must be indexed by text-based search engies. By automatically creating a transcript through automatic speech recognition (ASR), the spoken word becomes accessible to text search, and queries for keywords are made possible. But stil, important contextual information like the identity of the speaker is not captured. Especially when gathering original footage in the political domain, the identity of the speaker can be the most important query constraint, although this name may not be prominent in the words spoken. It is thus desireable to have this information provided explicitely to the search engine. To provide this information, the archive must be an alyzed by automatic Speaker Identification (SID). While this research topic has seen substantial gains in accuracy and robustness over last years, it has not yet established itself as a helpful, large-scale tool outside the research community. This thesis sets out to establish a workflow to provide automatic speaker identification. Its application is to help journalists searching on speeches given in the German parliament (Bundestag). This is a contribution to the News-Stream 3.0 project, a BMBF funded research project that addresses accessibility of various data sources for journalists.
In service robotics, tasks without the involvement of objects are barely applicable, like in searching, fetching or delivering tasks. Service robots are supposed to capture efficiently object related information in real world scenes while for instance considering clutter and noise, and also being flexible and scalable to memorize a large set of objects. Besides object perception tasks like object recognition where the object’s identity is analyzed, object categorization is an important visual object perception cue that associates unknown object instances based on their e.g. appearance or shape to a corresponding category. We present a pipeline from the detection of object candidates in a domestic scene over the description to the final shape categorization of detected candidates. In order to detect object related information in cluttered domestic environments an object detection method is proposed that copes with multiple plane and object occurrences like in cluttered scenes with shelves. Further a surface reconstruction method based on Growing Neural Gas (GNG) in combination with a shape distribution-based descriptor is proposed to reflect shape characteristics of object candidates. Beneficial properties provided by the GNG such as smoothing and denoising effects support a stable description of the object candidates which also leads towards a more stable learning of categories. Based on the presented descriptor a dictionary approach combined with a supervised shape learner is presented to learn prediction models of shape categories.
Experimental results, of different shapes related to domestically appearing object shape categories such as cup, can, box, bottle, bowl, plate and ball, are shown. A classification accuracy of about 90% and a sequential execution time of lesser than two seconds for the categorization of an unknown object is achieved which proves the reasonableness of the proposed system design. Additional results are shown towards object tracking and false positive handling to enhance the robustness of the categorization. Also an initial approach towards incremental shape category learning is proposed that learns a new category based on the set of previously learned shape categories.