Prof. Dr. Wolfgang Heiden
Refine
Departments, institutes and facilities
Document Type
- Conference Object (53)
- Article (21)
- Part of a Book (5)
- Preprint (2)
- Contribution to a Periodical (1)
- Doctoral Thesis (1)
- Working Paper (1)
Year of publication
Keywords
- Content Module (2)
- Fuzzy logic (2)
- Original Story (2)
- edutainment (2)
- fuzzy logic (2)
- hypermedia (2)
- 3D shape (1)
- AR (1)
- Alkane (1)
- Augmented reality (1)
The Covid-19 pandemic has challenged educators across the world to move their teaching and mentoring from in-person to remote. During nonpandemic semesters at their institutes (e.g. universities), educators can directly provide students the software environment needed to support their learning - either in specialized computer laboratories (e.g. computational chemistry labs) or shared computer spaces. These labs are often supported by staff that maintains the operating systems (OS) and software. But how does one provide a specialized software environment for remote teaching? One solution is to provide students a customized operating system (e.g., Linux) that includes open-source software for supporting your teaching goals. However, such a solution should not require students to install the OS alongside their existing one (i.e. dual/multi-booting) or be used as a complete replacement. Such approaches are risky because of a) the students' possible lack of software expertise, b) the possible disruption of an existing software workflow that is needed in other classes or by other family members, and c) the importance of maintaining a working computer when isolated (e.g. societal restrictions). To illustrate possible solutions, we discuss our approach that used a customized Linux OS and a Docker container in a course that teaches computational chemistry and Python3.
Quantum mechanical theories are used to search and optimized the conformations of proposed small molecule candidates for treatment of SARS-CoV-2. These candidate compounds are taken from what is reported in the news and in other pre-peer-reviewed literature (e.g. ChemRxiv, bioRxiv). The goal herein is to provided predicted structures and relative conformational stabilities for selected drug and ligand candidates, in the hopes that other research groups can make use of them for developing a treatment.
In an effort to assist researchers in choosing basis sets for quantum mechanical modeling of molecules (i.e. balancing calculation cost versus desired accuracy), we present a systematic study on the accuracy of computed conformational relative energies and their geometries in comparison to MP2/CBS and MP2/AV5Z data, respectively. In order to do so, we introduce a new nomenclature to unambiguously indicate how a CBS extrapolation was computed. Nineteen minima and transition states of buta-1,3-diene, propan-2-ol and the water dimer were optimized using forty-five different basis sets. Specifically, this includes one Pople (i.e. 6-31G(d)), eight Dunning (i.e. VXZ and AVXZ, X=2-5), twenty-five Jensen (i.e. pc-n, pcseg-n, aug-pcseg-n, pcSseg-n and aug-pcSseg-n, n=0-4) and nine Karlsruhe (e.g. def2-SV(P), def2-QZVPPD) basis sets. The molecules were chosen to represent both common and electronically diverse molecular systems. In comparison to MP2/CBS relative energies computed using the largest Jensen basis sets (i.e. n=2,3,4), the use of smaller sizes (n=0,1,2 and n=1,2,3) provides results that are within 0.11--0.24 and 0.09-0.16 kcal/mol. To practically guide researchers in their basis set choice, an equation is introduced that ranks basis sets based on a user-defined balance between their accuracy and calculation cost. Furthermore, we explain why the aug-pcseg-2, def2-TZVPPD and def2-TZVP basis sets are very suitable choices to balance speed and accuracy.
Energy Profiles of the Ring Puckering of Cyclopentane, Methylcyclopentane and Ethylcyclopentane
(2019)
The elucidation of conformations and relative potential energies (rPEs) of small molecules has a long history across a diverse range of fields. Periodically, it is helpful to revisit what conformations have been investigated and to provide a consistent theoretical framework for which clear comparisons can be made. In this paper, we compute the minima, first- and second-order saddle points, and torsion-coupled surfaces for methanol, ethanol, propan-2-ol, and propanol using consistent high-level MP2 and CCSD(T) methods. While for certain molecules more rigorous methods were employed, the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pV5Z theory level was used throughout to provide relative energies of all minima and first-order saddle points. The rPE surfaces were uniformly computed at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ level. To the best of our knowledge, this represents the most extensive study for alcohols of this kind, revealing some new aspects. Especially for propanol, we report several new conformations that were previously not investigated. Moreover, two metrics are included in our analysis that quantify how the selected surfaces are similar to one another and hence improve our understanding of the relationship between these alcohols.
The work being described in this paper is the result of a cooperation project between the Institute of Visual Computing at the Bonn-Rhein-Sieg University of Applied Sciences, Germany and the Laboratory of Biomedical Engineering at the Federal University of Uberlândia, Brazil. The aim of the project is the development of a virtual environment based training simulator which enables for better and faster learning the control of upper limb prostheses. The focus of the paper is the description of the technical setup since learning tutorials still need to be developed as well as a comprehensive evaluation still needs to be carried out.
This paper describes adaptive time frequency analysis of EEG signals, both in theory as well as in practice. A momentary frequency estimation algorithm is discussed and applied to EEG time series of test persons performing a concentration experiment. The motivation for deriving and implementing a time frequency estimator is the assumption that an emotional change implies a transient in the measured EEG time series, which again are superimposed by biological white noise as well as artifacts. It will be shown how accurately and robustly the estimator detects the transient even under such complicated conditions.
In this paper, we describe an approach to academic teaching in computer science using storytelling as a means to investigate to hypermedia and virtual reality topics. Indications are shown that narrative activity within the context of a Hypermedia Novel related to educational content can enhance motivation for self-conducted learning and in parallel lead to an edutainment system of its own. In contrast to existing approaches the Hypermedia Novel environment allows an iterative approach to the narrative content, thereby integrating story authoring and story reception not only in the beginning but at any time. The narrative practice and background research as well as the resulting product can supplement lecture material with comparable success to traditional academic teaching approaches. On top of this there is the added value of soft skill training and a gain of expert knowledge in areas of personal background research.
Simultaneous detection of cyanide and heavy metals for environmental analysis by means of µISEs
(2010)
The objective of the FIVIS project is to develop a bicycle simulator which is able to simulate real life bicycle ride situations as a virtual scenario within an immersive environment. A sample test bicycle is mounted on a motion platform to enable a close to reality simulation of turns and balance situations. The visual field of the bike rider is enveloped within a multi-screen visualisation environment which provides visual data relative to the motion and activity of the test bicycle. That means the bike rider has to pedal and steer the bicycle as a usual bicycle, while the motion is recorded and processed to control the simulation. Furthermore, the platform is fed with real forces and accelerations that have been logged by a mobile data acquisition system during real bicycle test drives. Thus, using a feedback system makes the movements of the platform match to the virtual environment and the reaction of the driver (e.g. steering angle, step rate).
"Visual Computing" (VC) fasst als hochgradig aktuelles Forschungsgebiet verschiedene Bereiche der Informatik zusammen, denen gemeinsam ist, dass sie sich mit der Erzeugung und Auswertung visueller Signale befassen. Im Fachbereich Informatik der FH Bonn-Rhein-Sieg nimmt dieser Aspekt eine zentrale Rolle in Lehre und Forschung innerhalb des Studienschwerpunktes Medieninformatik ein. Drei wesentliche Bereiche des VC werden besonders in diversen Lehreinheiten und verschiedenen Projekten vermittelt: Computergrafik, Bildverarbeitung und Hypermedia-Anwendungen. Die Aktivitäten in diesen drei Bereichen fließen zusammen im Kontext immersiver virtueller Visualisierungsumgebungen.
The objective of the FIVIS project is to develop a bicycle simulator which is able to simulate real life bicycle ride situations as a virtual scenario within an immersive environment. A sample test bicycle is mounted on a motion platform to enable a close to reality simulation of turns and balance situations. The visual field of the bike rider is enveloped within a multi-screen visualization environment which provides visual data relative to the motion and activity of the test bicycle. This implies the bike rider has to pedal and steer the bicycle as they would a traditional bicycle, while forward motion is recorded and processed to control the visualization. Furthermore, the platform is fed with real forces and accelerations that have been logged by a mobile data acquisition system during real bicycle test drives. Thus, using a feedback system makes the movements of the platform reflect the virtual environment and the reaction of the driver (e.g. steering angle, step rate).
In this paper, we describe an approach to academic teaching in computer science using storytelling as a means for background research to hypermedia and virtual reality topics. It is shown that narrative activity within the context of a Hypermedia Novel related to educational content can enhance motivation for self-conducted learning and in parallel lead to an edutainment system of its own. The narrative practice and background research as well as the resulting product can supplement lecture material with comparable success to traditional academic teaching approaches.
GL-Wrapper for Stereoscopic Rendering of Standard Applications for a PC-based Immersive Environment
(2007)
The Virtual Memory Palace
(2006)
The intention of the Virtual Memory Palace is to help people memorize information by addressing their visual memory. The concept is based on the “Memory Palace” as an ancient Greek memorization technique, where symbols are placed in a certain way within an imaginative building in order to remember the original information whenever the mind goes through the vision of this building again. The goal of this work was to create such a Memory Palace in a virtual environment, so it requires less creative effort of the contemporary learner than was necessary in ancient Greece. The Virtual Memory Palace offers the possibility to freely explore a virtual 3d architectural model and to place icons at various locations within this model. Specific behaviors were assigned to these locations to make them more memorable. To test the benefit of this concept, an experiment with 15 subjects was conducted. The results show a higher remembrance rate of items learned in the Virtual Memory Palace compared to a wordlist. The observations made during the test showed that most of the subjects enjoyed the memorization environment and were astonished how well the Virtual Memory Palace worked for them.
A generic approach to describing shape and topography of arbitrary objects is presented, using linguistic variables to combine different features in one fuzzy descriptor. Although the origin of the method lies in molecular visualization and drug design, it can be applied in principle to any surface represented by a polygon mesh. Two approaches to shape description are presented that both lead to linguistic variables that can be used for surface segmentation by means of shape: One approach is based on the calculation of canonical curvatures, the other describes the "embeddedness" of a surface area related to the overall geometry of a 3D object.
The objective of the presented approach is to develop a 3D-reconstruction method for micro organisms from sequences of microscopic images by varying the level-of-focus. The approach is limited to translucent silicatebased marine and freshwater organisms (e.g. radiolarians). The proposed 3D-reconstruction method exploits the connectivity of similarly oriented and spatially adjacent edge elements in consecutive image layers. This yields a 3D-mesh representing the global shape of the objects together with details of the inner structure. Possible applications can be found in comparative morphology or hydrobiology, where e.g. deficiencies in growth and structure during incubation in toxic water or gravity effects on metabolism have to be determined.
Augmented Perception - AuPer
(2004)
In this paper we present a new storytelling approach, called Hypermedia Novel (HYMN), that extends the classical narration concept of a story. We develop an underlying modular concept – the narration module – that facilitates a new manner of reception as well as creation of a story. The HYMN focuses on the recipient and his role of consuming a story and a heterogeneous group of creative authors by providing narration modules and their interfaces without defining the granularity of the modules. Using several kinds ofmultimedia elements and a hyperlink structure, we present a first demonstrator that implements this new concept. We also discuss improvements, e.g. MPEG-4/7, that support both reception by the audience, and the process of creating the story by a dispersed team of authors.
Virtuelle Umgebungen
(2000)
Imagine a person navigating on the trackball of a mouse - it would need full body control. In this article we describe the Virtual Balance, an input device for a responsive virtual environment. This device is driven by weight shift on a small platform and does neither require special training nor wearing uncomfortable equipment. The Virtual Balance aims at intuitive navigation through complex 3D space. It can be used to skate or fly like on a magic carpet through a virtual world. With shifts of body posture the navigator controls speed and direction of his/her movement in the model world, which is calculated from the changing pressure on three weight cells under the platform. Different fields of application are presented, showing scenarios already realized as well as a variety of possibilities for future use.
Benches and Caves
(1998)
Benches and Caves
(1998)
Benches and CAVEs
(1997)
Der virtuelle Wetterfrosch
(1997)
ATM virtual studio services
(1996)
The term "virtual studio" refers to real-time 3D graphics systems used to render a virtual set in sync with live camera motion. As the camera pans and zooms, the virtual set is redrawn from the correct perspective. Using blue room techniques, actors in front of the real camera are then “placed in” the virtual set. Current virtual studio systems are centralized – the blue room, cameras, renderers etc. are located at a single site. However distributed configurations offer significant economies such as the sharing of expensive rendering equipment among many sites. This paper describes early expe- riences of the DVP1 project in the realization of a distributed virtual studio. In particular we de- scribe the first video production using a distributed virtual studio over ATM and make observations concerning network QOS requirements.
This paper presents an overview on and reports on early experiences of the European ACTS project AC089 called „Distributed Video Production (DVP)“ which started in late 1995. Central to DVP are distributed pilot applications for professional digital video production over ATM broadband networks (LAN and WAN). Distributed video production refers to situations where the cameras, recorders, switches, mixers and other equipment used in video production (or post-production) are located at several sites linked by high bandwidth network connections. The DVP project investigates requirements of broadcasters for several forms of distributed video production and runs a series of trials of distributed virtual studios, distributed rehearsals and remote video editing and retrieval. Together with North American partners a transatlantic broadband ATM link will be tested for distributed virtual reality simulations. This paper reports about two initial tests with a German public broadcaster and the German Telekom. DVP project partners are GMD and about 20 broadcasters, computer and video equipment manufacturers, and video production companies. More information can be obtained from http://viswiz.gmd.de/DVP
Distributed Video Production
(1996)
Video production is inherently distributed: Broadcasters are physically distributed over several sites and studios, they increasingly outsource video production and post-production to specialized studios or upcoming virtual studios. Thus there is an increasing demand for the enabling technology for distributed video production.
Methoden zur computerunterstützten Untersuchung selektiver Oberflächeneigenschaften von Proteinen
(1993)