Prof. Dr. André Hinkenjann
Refine
Department, Institute
- Fachbereich Informatik (2) (remove)
Keywords
- Large, high-resolution displays (2) (remove)
There is a need for rapid prototyping tools for large, high-resolution displays (LHRDs) in both scientific and commercial domains. That is, the area of LHRDs is still poorly explored and possesses no established standards, thus developers have to experiment a lot with new interaction and visualization concepts. Therefore, a rapid prototyping tool for LHRDs has to undertake two functions: ease the process of application development, and make an application runnable on a broad range of LHRD setups. The latter comprises a challenge, since most LHRDs are driven by multiple compute nodes and require distributed applications.
Supported by their large size and high resolution, display walls suit well for different collaboration types. However, in order to foster instead of impede collaboration processes, interaction techniques need to be carefully designed, taking into regard the possibilities and limitations of the display size, and their effects on human perception and performance. In this paper we investigate the impact of visual distractors (which, for instance, might be caused by other collaborators' input) in peripheral vision on short-term memory and attention. The distractors occur frequently when multiple users collaborate in large wall display systems and may draw attention away from the main task, as such potentially affecting performance and cognitive load. Yet, the effect of these distractors is hardly understood. Gaining a better understanding thus may provide valuable input for designing more effective user interfaces. In this article, we report on two interrelated studies that investigated the effect of distractors. Depending on when the distractor is inserted in the task performance sequence, as well as the location of the distractor, user performance can be disturbed: we will show that distractors may not affect short term memory, but do have an effect on attention. We will closely look into the effects, and identify future directions to design more effective interfaces.