Institut für funktionale Gen-Analytik (IFGA)
Refine
Departments, institutes and facilities
- Institut für funktionale Gen-Analytik (IFGA) (494)
- Fachbereich Angewandte Naturwissenschaften (140)
- Fachbereich Informatik (63)
- Institute of Visual Computing (IVC) (30)
- Fachbereich Elektrotechnik, Maschinenbau und Technikjournalismus (4)
- Institut für Sicherheitsforschung (ISF) (4)
- Institut für Technik, Ressourcenschonung und Energieeffizienz (TREE) (3)
- Fachbereich Wirtschaftswissenschaften (1)
Document Type
- Article (403)
- Conference Object (58)
- Part of a Book (28)
- Contribution to a Periodical (2)
- Preprint (2)
- Doctoral Thesis (1)
Year of publication
Keywords
- apoptosis (9)
- cytokine-induced killer cells (8)
- immunotherapy (6)
- Organic aciduria (5)
- CD21 (4)
- DNA methylation (4)
- Inborn error of metabolism (4)
- 5-Methylcytosine (3)
- Arthritis (3)
- Bcl-2 (3)
The cystic fibrosis transmembrane conductance regulator (CFTR) anion channel and the epithelial Na+ channel (ENaC) play essential roles in transepithelial ion and fluid transport in numerous epithelial tissues. Inhibitors of both channels have been important tools for defining their physiological role in vitro. However, two commonly used CFTR inhibitors, CFTRinh-172 and GlyH-101, also inhibit non-CFTR anion channels, indicating they are not CFTR specific. However, the potential off-target effects of these inhibitors on epithelial cation channels has to date not been addressed. Here, we show that both CFTR blockers, at concentrations routinely employed by many researchers, caused a significant inhibition of store-operated calcium entry (SOCE) that was time-dependent, poorly reversible and independent of CFTR. Patch clamp experiments showed that both CFTRinh-172 and GlyH-101 caused a significant block of Orai1-mediated whole cell currents, establishing that they likely reduce SOCE via modulation of this Ca2+ release-activated Ca2+ (CRAC) channel. In addition to off-target effects on calcium channels, both inhibitors significantly reduced human αβγ-ENaC-mediated currents after heterologous expression in Xenopus oocytes, but had differential effects on δβγ-ENaC function. Molecular docking identified two putative binding sites in the extracellular domain of ENaC for both CFTR blockers. Together, our results indicate that caution is needed when using these two CFTR inhibitors to dissect the role of CFTR, and potentially ENaC, in physiological processes.
Indoor spaces exhibit microbial compositions that are distinctly dissimilar from one another and from outdoor spaces. Unique in this regard, and a topic that has only recently come into focus, is the microbiome of hospitals. While the benefits of knowing exactly which microorganisms propagate how and where in hospitals are undoubtedly beneficial for preventing hospital-acquired infections, there are, to date, no standardized procedures on how to best study the hospital microbiome. Our study aimed to investigate the microbiome of hospital sanitary facilities, outlining the extent to which hospital microbiome analyses differ according to sample-preparation protocol. For this purpose, fifty samples were collected from two separate hospitals—from three wards and one hospital laboratory—using two different storage media from which DNA was extracted using two different extraction kits and sequenced with two different primer pairs (V1–V2 and V3–V4). There were no observable differences between the sample-preservation media, small differences in detected taxa between the DNA extraction kits (mainly concerning Propionibacteriaceae), and large differences in detected taxa between the two primer pairs V1–V2 and V3–V4. This analysis also showed that microbial occurrences and compositions can vary greatly from toilets to sinks to showers and across wards and hospitals. In surgical wards, patient toilets appeared to be characterized by lower species richness and diversity than staff toilets. Which sampling sites are the best for which assessments should be analyzed in more depth. The fact that the sample processing methods we investigated (apart from the choice of primers) seem to have changed the results only slightly suggests that comparing hospital microbiome studies is a realistic option. The observed differences in species richness and diversity between patient and staff toilets should be further investigated, as these, if confirmed, could be a result of excreted antimicrobials.
The epithelial sodium channel (ENaC) is a heterotrimeric ion channel that plays a key role in sodium and water homeostasis in tetrapod vertebrates. In the aldosterone-sensitive distal nephron, hormonally controlled ENaC expression matches dietary sodium intake to its excretion. Furthermore, ENaC mediates sodium absorption across the epithelia of the colon, sweat ducts, reproductive tract, and lung. ENaC is a constitutively active ion channel and its expression, membrane abundance, and open probability (PO) are controlled by multiple intracellular and extracellular mediators and mechanisms [9]. Aberrant ENaC regulation is associated with severe human diseases, including hypertension, cystic fibrosis, pulmonary edema, pseudohypoaldosteronism type 1, and nephrotic syndrome [9].
Background: Cancer heterogeneity poses a serious challenge concerning the toxicity and adverse effects of therapeutic inhibitors, especially when it comes to combinatorial therapies that involve multiple targeted inhibitors. In particular, in non-small cell lung cancer (NSCLC), a number of studies have reported synergistic effects of drug combinations in the preclinical models, while they were only partially successful in the clinical setup, suggesting those alternative clinical strategies (with genetic background and immune response) should be considered. Herein, we investigated the antitumor effect
of cytokine-induced killer (CIK) cells in combination with ALK and PD-1 inhibitors in vitro on genetically variable NSCLC cell lines.
Methods: We co-cultured the three genetically different NSCLC cell lines NCI-H2228 (EML4-ALK), A549 (KRAS mutation), and HCC-78 (ROS1 rearrangement) with and without nivolumab (PD-1 inhibitor) and crizotinib (ALK inhibitor). Additionally, we profiled the variability of surface expression multiple immune checkpoints, the concentration of absolute dead cells, intracellular granzyme B on CIK cells using flow cytometry as well as RT-qPCR. ELISA and Western blot were performed to verify the activation of CIK cells.
Results: Our analysis showed that (a) nivolumab significantly weakened PD-1 surface expression on CIK cells without impacting other immune checkpoints or PD-1 mRNA expression, (b) this combination strategy showed an effective response on cell viability, IFN-g production, and intracellular release of granzyme B in CD3+ CD56+ CIK cells, but solely in NCI-H2228, (c) the intrinsic expression of Fas ligand (FasL) as a T-cell activation marker in CIK cells was upregulated by this additive effect, and (d) nivolumab induced Foxp3 expression in CD4+CD25+ subpopulation of CIK cells significantly increased. Taken together, we could show that CIK cells in combination with crizotinib and nivolumab can enhance the anti-tumor immune response through FasL activation, leading to increased IFN-g and granzyme B, but only in NCI-H2228 cells with EML4-ALK rearrangement. Therefore, we hypothesize that CIK therapy may be a potential alternative in NSCLC patients harboring EML4-ALK rearrangement, in addition, we support the idea that combination therapies offer significant potential when they are optimized on a patient-by-patient basis.
SLC6A14 (ATB0,+) is unique among SLC proteins in its ability to transport 18 of the 20 proteinogenic (dipolar and cationic) amino acids and naturally occurring and synthetic analogues (including anti-viral prodrugs and nitric oxide synthase (NOS) inhibitors). SLC6A14 mediates amino acid uptake in multiple cell types where increased expression is associated with pathophysiological conditions including some cancers. Here, we investigated how a key position within the core LeuT-fold structure of SLC6A14 influences substrate specificity. Homology modelling and sequence analysis identified the transmembrane domain 3 residue V128 as equivalent to a position known to influence substrate specificity in distantly related SLC36 and SLC38 amino acid transporters. SLC6A14, with and without V128 mutations, was heterologously expressed and function determined by radiotracer solute uptake and electrophysiological measurement of transporter-associated current. Substituting the amino acid residue occupying the SLC6A14 128 position modified the binding pocket environment and selectively disrupted transport of cationic (but not dipolar) amino acids and related NOS inhibitors. By understanding the molecular basis of amino acid transporter substrate specificity we can improve knowledge of how this multi-functional transporter can be targeted and how the LeuT-fold facilitates such diversity in function among the SLC6 family and other SLC amino acid transporters.
Cytokine-induced killer cells (CIK) in combination with dendritic cells (DCs) have shown favorable outcomes in renal cell carcinoma (RCC), yet some patients exhibit recurrence or no response to this therapy. In a broader perspective, enhancing the antitumor response of DC-CIK cells may help to address this issue. Considering this, herein, we investigated the effect of anti-CD40 and anti-CTLA-4 antibodies on the antitumor response of DC-CIK cells against RCC cell lines. Our analysis showed that, a) anti-CD40 antibody (G28.5) increased the CD3+CD56+ effector cells of CIK cells by promoting the maturation and activation of DCs, b) G28.5 also increased CTLA-4 expression in CIK cells via DCs, but the increase could be hindered by the CTLA-4 inhibitor (ipilimumab), c) adding ipilimumab was also able to significantly increase the proportion of CD3+CD56+ cells in DC-CIK cells, d) anti-CD40 antibodies predominated over anti-CTLA-4 antibodies for cytotoxicity, apoptotic effect and IFN-g secretion of DC-CIK cells against RCC cells, e) after ipilimumab treatment, the population of Tregs in CIK cells remained unaffected, but ipilimumab combined with G28.5 significantly reduced the expression of CD28 in CIK cells. Taken together, we suggest that the agonistic anti-CD40 antibody rather than CTLA-4 inhibitor may improve the antitumor response of DC-CIK cells, particularly in RCC. In addition, we pointed towards the yet to be known contribution of CD28 in the crosstalk between anti-CTLA-4 and CIK cells.
There is an unmet need for the development and validation of biomarkers and surrogate endpoints for clinical trials in propionic acidemia (PA) and methylmalonic acidemia (MMA). This review examines the pathophysiology and clinical consequences of PA and MMA that could form the basis for potential biomarkers and surrogate endpoints. Changes in primary metabolites such as methylcitric acid (MCA), MCA:citric acid ratio, oxidation of 13C-propionate (exhaled 13CO2), and propionylcarnitine (C3) have demonstrated clinical relevance in patients with PA or MMA. Methylmalonic acid, another primary metabolite, is a potential biomarker, but only in patients with MMA. Other potential biomarkers in patients with either PA and MMA include secondary metabolites, such as ammonium, or the mitochondrial disease marker, fibroblast growth factor 21. Additional research is needed to validate these biomarkers as surrogate endpoints, and to determine whether other metabolites or markers of organ damage could also be useful biomarkers for clinical trials of investigational drug treatments in patients with PA or MMA. This review examines the evidence supporting a variety of possible biomarkers for drug development in propionic and methylmalonic acidemias.
Modern PCR-based analytical techniques have reached sensitivity levels that allow for obtaining complete forensic DNA profiles from even tiny traces containing genomic DNA amounts as small as 125 pg. Yet these techniques have reached their limits when it comes to the analysis of traces such as fingerprints or single cells. One suggestion to overcome these limits has been the usage of whole genome amplification (WGA) methods. These methods aim at increasing the copy number of genomic DNA and by this means generate more template DNA for subsequent analyses. Their application in forensic contexts has so far remained mostly an academic exercise, and results have not shown significant improvements and even have raised additional analytical problems. Until very recently, based on these disappointments, the forensic application of WGA seems to have largely been abandoned. In the meantime, however, novel improved methods are pointing towards a perspective for WGA in specific forensic applications. This review article tries to summarize current knowledge about WGA in forensics and suggests the forensic analysis of single-donor bioparticles and of single cells as promising applications.
Cysticfibrosis (CF) arises from mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in progressiveand life-limiting respiratory disease. R751L is a rare CFTR mutation that is poorly characterized. Our aims were to describe theclinical and molecular phenotypes associated with R751L. Relevant clinical data were collected from three heterozygote individu-als harboring R751L (2 patients with G551D/R751L and 1 with F508del/R751L). Assessment of R751L-CFTR function was made inprimary human bronchial epithelial cultures (HBEs) andXenopusoocytes. Molecular properties of R751L-CFTR were investigatedin the presence of known CFTR modulators. Although sweat chloride was elevated in all three patients, the clinical phenotypeassociated with R751L was mild. Chloride secretion in F508del/R751L HBEs was reduced compared with non-CF HBEs and asso-ciated with a reduction in sodium absorption by the epithelial sodium channel (ENaC). However, R751L-CFTR function inXenopusoocytes, together with folding and cell surface transport of R751L-CFTR, was not different from wild-type CFTR. Overall,R751L-CFTR was associated with reduced sodium chloride absorption but had functional properties similar to wild-type CFTR.This is thefirst report of R751L-CFTR that combines clinical phenotype with characterization of functional and biological proper-ties of the mutant channel. Our work will build upon existing knowledge of mutations within this region of CFTR and, importantly,inform approaches for clinical management. Elevated sweat chloride and reduced chloride secretion in HBEs may be due to al-ternative non-CFTR factors, which require further investigation.
Cytokine-induced killer (CIK) cells are an ex vivo expanded heterogeneous cell population with an enriched NK-T phenotype (CD3+CD56+). Due to the convenient and relatively inexpensive expansion capability, together with low incidence of graft versus host disease (GVHD) in allogeneic cancer patients, CIK cells are a promising candidate for immunotherapy. It is well known that natural killer group 2D (NKG2D) plays an important role in CIK cell-mediated antitumor activity; however, it remains unclear whether its engagement alone is sufficient or if it requires additional co-stimulatory signals to activate the CIK cells. Likewise, the role of 2B4 has not yet been identified in CIK cells. Herein, we investigated the individual and cumulative contribution of NKG2D and 2B4 in the activation of CIK cells. Our analysis suggests that (a) NKG2D (not 2B4) is implicated in CIK cell (especially CD3+CD56+ subset)-mediated cytotoxicity, IFN-γ secretion, E/T conjugate formation, and degranulation; (b) NKG2D alone is adequate enough to induce degranulation, IFN-γ secretion, and LFA-1 activation in CIK cells, while 2B4 only provides limited synergy with NKG2D (e.g., in LFA-1 activation); and (c) NKG2D was unable to costimulate CD3. Collectively, we conclude that NKG2D engagement alone suffices to activate CIK cells, thereby strengthening the idea that targeting the NKG2D axis is a promising approach to improve CIK cell therapy for cancer patients. Furthermore, CIK cells exhibit similarities to classical invariant natural killer (iNKT) cells with deficiencies in 2B4 stimulation and in the costimulation of CD3 with NKG2D. In addition, based on the current data, the divergence in receptor function between CIK cells and NK (or T) cells can be assumed, pointing to the possibility that molecular modifications (e.g., using chimeric antigen receptor technology) on CIK cells may need to be customized and optimized to maximize their functional potential.
The ability to discriminate between different ionic species, termed ion selectivity, is a key feature of ion channels and forms the basis for their physiological function. Members of the degenerin/epithelial sodium channel (DEG/ENaC) superfamily of trimeric ion channels are typically sodium selective, but to a surprisingly variable degree. While acid-sensing ion channels (ASICs) are weakly sodium selective (sodium:potassium ratio ∼10:1), ENaCs show a remarkably high preference for sodium over potassium (>500:1). This discrepancy may be expected to originate from differences in the pore-lining second transmembrane segment (M2). However, these show a relatively high degree of sequence conservation between ASICs and ENaCs, and previous functional and structural studies could not unequivocally establish that differences in M2 alone can account for the disparate degrees of ion selectivity. By contrast, surprisingly little is known about the contributions of the first transmembrane segment (M1) and the preceding pre-M1 region. In this study, we used conventional and noncanonical amino acid-based mutagenesis in combination with a variety of electrophysiological approaches to show that the pre-M1 and M1 regions of mASIC1a channels are major determinants of ion selectivity. Mutational investigations of the corresponding regions in hENaC show that these regions contribute less to ion selectivity, despite affecting ion conductance. In conclusion, our work suggests that the remarkably different degrees of sodium selectivity in ASICs and ENaCs are achieved through different mechanisms. These results further highlight how M1 and pre-M1 are likely to differentially affect pore structure in these related channels.
Intimate swabs taken for examination in sexual assault cases typically yield mixtures of sperm and epithelial cell types. While powerful, differential extraction protocols to overcome such cell type mixtures by separate lysis of epithelial cells and spermatozoa can still prove ineffective, in particular if only few sperm cells are present or if swabs contain sperm from more than one individual leading to complex low level DNA mixtures. A means to avoid such mixtures consists in the analysis of single micromanipulated sperm cells. However, the quantity of DNA from single sperm cells is not sufficient for conventional STR analysis. Here, we describe a simple method for micromanipulating individual sperm cells from intimate swabs and show that whole genome amplification can generate sufficient amounts of DNA from single cells for subsequent DNA profiling. We recovered over 80% of alleles of haploid autosomal STR profiles from the majority of individual sperm cells. Furthermore, we demonstrate that in mixtures of sperm from two contributors, Y-STR and X-STR profiles of individual sperm cells can be used to sort the haploid autosomal profiles to develop the diploid consensus STR profiles of the individual donors. Finally, by analysing single sperm cells from mock sexual assault swabs with one or two sperm donors, we showed that our protocols enabled the identification of the unknown male contributors.
The Covid-19 pandemic has challenged educators across the world to move their teaching and mentoring from in-person to remote. During nonpandemic semesters at their institutes (e.g. universities), educators can directly provide students the software environment needed to support their learning - either in specialized computer laboratories (e.g. computational chemistry labs) or shared computer spaces. These labs are often supported by staff that maintains the operating systems (OS) and software. But how does one provide a specialized software environment for remote teaching? One solution is to provide students a customized operating system (e.g., Linux) that includes open-source software for supporting your teaching goals. However, such a solution should not require students to install the OS alongside their existing one (i.e. dual/multi-booting) or be used as a complete replacement. Such approaches are risky because of a) the students' possible lack of software expertise, b) the possible disruption of an existing software workflow that is needed in other classes or by other family members, and c) the importance of maintaining a working computer when isolated (e.g. societal restrictions). To illustrate possible solutions, we discuss our approach that used a customized Linux OS and a Docker container in a course that teaches computational chemistry and Python3.
Fabry disease (FD) is an X‐linked lysosomal storage disorder. Deficiency of the lysosomal enzyme alpha‐galactosidase (GLA) leads to accumulation of potentially toxic globotriaosylceramide (Gb3) on a multisystem level. Cardiac and cerebrovascular abnormalities as well as progressive renal failure are severe, life‐threatening long‐term complications. The complete pathophysiology of chronic kidney disease (CKD) in FD and the role of tubular involvement for its progression are unclear.
We established human renal tubular epithelial cell lines from the urine of male FD patients and male controls. The renal tubular system is rich in mitochondria and involved in transport processes at high energy costs. Our studies revealed fragmented mitochondria with disrupted cristae structure in FD patient cells. Oxidative stress levels were elevated and oxidative phosphorylation was up‐regulated in FD pointing at enhanced energetic needs. Mitochondrial homeostasis and energy metabolism revealed major changes as evidenced by differences in mitochondrial number, energy production and fuel consumption. The changes were accompanied by activation of the autophagy machinery in FD. Sirtuin1, an important sensor of (renal) metabolic stress and modifier of different defense pathways, was highly expressed in FD.
Our data show that lysosomal FD impairs mitochondrial function and results in severe disturbance of mitochondrial energy metabolism in renal cells. This insight on a tissue‐specific level points to new therapeutic targets which might enhance treatment efficacy.
Isolated methylmalonic acidaemia (MMA) and propionic acidaemia (PA) are rare inherited metabolic diseases. Six years ago, a detailed evaluation of the available evidence on diagnosis and management of these disorders has been published for the first time. The article received considerable attention, illustrating the importance of an expert panel to evaluate and compile recommendations to guide rare disease patient care. Since that time, a growing body of evidence on transplant outcomes in MMA and PA patients and use of precursor free amino acid mixtures allows for updates of the guidelines. In this article, we aim to incorporate this newly published knowledge and provide a revised version of the guidelines. The analysis was performed by a panel of multidisciplinary health care experts, who followed an updated guideline development methodology (GRADE). Hence, the full body of evidence up until autumn 2019 was re‐evaluated, analysed and graded. As a result, 21 updated recommendations were compiled in a more concise paper with a focus on the existing evidence to enable well‐informed decisions in the context of MMA and PA patient care.
Isolation of DNA and RNA
(2021)
Polymerase Chain Reaction
(2021)
DNA Sequencing
(2021)
3-Hydroxyisobutyrate Dehydrogenase (HIBADH) deficiency - a novel disorder of valine metabolism
(2021)
3-Hydroxyisobutyric acid (3HiB) is an intermediate in the degradation of the branched-chain amino acid valine. Disorders in valine degradation can lead to 3HiB accumulation and its excretion in the urine. This article describes the first two patients with a new metabolic disorder, 3-hydroxyisobutyrate dehydrogenase (HIBADH) deficiency, its phenotype and its treatment with a low-valine diet. The detected mutation in the HIBADH gene leads to nonsense-mediated mRNA decay of the mutant allele and to a complete loss-of-function of the enzyme. Under strict adherence to a low-valine diet a rapid decrease of 3HiB excretion in the urine was observed. Due to limited patient numbers and intrafamilial differences in phenotype with one affected and one unaffected individual, the clinical phenotype of HIBADH deficiency needs further evaluation.
Background: Atypical myopathy (AM), an acquired multiple acyl-CoA dehydrogenase deficiency (MADD) in horses, induce changes in mitochondrial metabolism. Only few veterinary laboratories offer diagnostic testing for this disease. Inborn and acquired MADD exist in humans, therefore determination of organic acids (OA) in urine and acylcarnitines (AC) in blood by assays available in medical laboratories can serve as AM diagnostics. The evolution of OA and AC profiles in surviving horses is unreported.
Methods: AC profiles using electrospray ionization tandem mass spectrometry (ESI-MS/MS) and OA in urine using gas chromatography mass spectrometry (GC–MS) were determined in dried blot spots (DBS, n = 7) and urine samples (n = 5) of horses with AM (n = 7) at disease presentation and in longitudinal samples from 3/4 survivors and compared to DBS (n = 16) and urine samples (n = 7) from control horses using the Wilcoxon test.
Results: All short- (C2-C5) and medium-chain (C6-C12) AC in blood differed significantly (p < 0.008) between horses with AM and controls, except for C5:1 (p = 0.45) and C5OH + C4DC (p = 0.06). In AM survivors the AC concentrations decreased over time but were still partially elevated after 7 days. 14/62 (23%) of OA differed significantly between horses with AM and control horses. Concentrations of ethylmalonic acid, 2-hydroxyglutaric acid and the acylglycines (butyryl-, valeryl-, and hexanoylglycine) were highly elevated in the urine of all horses with AM at the day of disease presentation. In AM survivors, concentrations of those metabolites were initially lower and decreased during remission to approach normalization after 7 days.
Conclusion: OA and AC profiling by specialized human medical laboratories was used to diagnose AM in horses. Elevation of specific metabolites were still evident several days after disease presentation, allowing diagnosis via analysis of samples from convalescent animals.
Cancer is a complex disease where resistance to therapies and relapses often pose a serious clinical challenge. The scenario is even more complicated when the cancer type itself is heterogeneous in nature, e.g., lymphoma, a cancer of the lymphocytes which constitutes more than 70 different subtypes. Indeed, the treatment options continue to expand in lymphomas. Herein, we provide insights into lymphoma-specific clinical trials based on cytokine-induced killer (CIK) cell therapy and other pre-clinical lymphoma models where CIK cells have been used along with other synergetic tumor-targeting immune modules to improve their therapeutic potential. From a broader perspective, we will highlight that CIK cell therapy has potential, and in this rapidly evolving landscape of cancer therapies its optimization (as a personalized therapeutic approach) will be beneficial in lymphomas.
Background: 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMGCLD) is an autosomal recessive disorder of ketogenesis and leucine degradation due to mutations in HMGCL.
Method: We performed a systematic literature search to identify all published cases. Two hundred eleven patients of whom relevant clinical data were available were included in this analysis. Clinical course, biochemical findings and mutation data are highlighted and discussed. An overview on all published HMGCL variants is provided.
Results: More than 95% of patients presented with acute metabolic decompensation. Most patients manifested within the first year of life, 42.4% already neonatally. Very few individuals remained asymptomatic. The neurologic long-term outcome was favorable with 62.6% of patients showing normal development.
Conclusion: This comprehensive data analysis provides a systematic overview on all published cases with HMGCLD including a list of all known HMGCL mutations.
Quantum mechanical theories are used to search and optimized the conformations of proposed small molecule candidates for treatment of SARS-CoV-2. These candidate compounds are taken from what is reported in the news and in other pre-peer-reviewed literature (e.g. ChemRxiv, bioRxiv). The goal herein is to provided predicted structures and relative conformational stabilities for selected drug and ligand candidates, in the hopes that other research groups can make use of them for developing a treatment.
2-methylacetoacetyl-coenzyme A thiolase (beta-ketothiolase) deficiency: one disease - two pathways
(2020)
Background: 2-methylacetoacetyl-coenzyme A thiolase deficiency (MATD; deficiency of mitochondrial acetoacetyl-coenzyme A thiolase T2/ “beta-ketothiolase”) is an autosomal recessive disorder of ketone body utilization and isoleucine degradation due to mutations in ACAT1.
Methods: We performed a systematic literature search for all available clinical descriptions of patients with MATD. Two hundred forty-four patients were identified and included in this analysis. Clinical course and biochemical data are presented and discussed.
Results: For 89.6% of patients at least one acute metabolic decompensation was reported. Age at first symptoms ranged from 2 days to 8 years (median 12 months). More than 82% of patients presented in the first 2 years of life, while manifestation in the neonatal period was the exception (3.4%). 77.0% (157 of 204 patients) of patients showed normal psychomotor development without neurologic abnormalities. Conclusion: This comprehensive data analysis provides a systematic overview on all cases with MATD identified in the literature. It demonstrates that MATD is a rather benign disorder with often favourable outcome, when compared with many other organic acidurias.
Cytokine-induced killer (CIK) cells are heterogeneous, major histocompatibility complex (MHC)-unrestricted T lymphocytes that have acquired the expression of several natural killer (NK) cell surface markers following the addition of interferon gamma (IFN-γ), OKT3 and interleukin-2 (IL-2). Treatment with CIK cells demonstrates a practical approach in cancer immunotherapy with limited, if any, graft versus host disease (GvHD) toxicity. CIK cells have been proposed and tested in many clinical trials in cancer patients by autologous, allogeneic or haploidentical administration. The possibility of combining them with specific monoclonal antibodies nivolumab and ipilimumab will further expand the possibility of their clinical utilization. Initially, phenotypic analysis was performed to explore CD3, CD4, CD56, PD-1 and CTLA-4 expression on CIK cells and PD-L1/PD-L2 expression on tumor cells. We further treated CIK cells with nivolumab and ipilimumab and measured the cytotoxicity of CIK cells cocultured to renal carcinoma cell lines, A-498 and Caki-2. We observed a significant decrease in viability of renal cell lines after treating with CIK cells (p < 0.0001) in comparison to untreated renal cell lines and anti-PD-1 or anti-CTLA-4 treatment had no remarkable effect on the viability of tumor cells. Using CCK-8, Precision Count Beads™ and Cell Trace™ violet proliferation assays, we proved significant increased proliferation of CIK cells in the presence of a combination of anti-PD-1 and anti-CTLA-4 antibodies compared to untreated CIK cells. The IFN-γ secretion increased significantly in the presence of A-498 and combinatorial blockade of PD-1 and CTLA-4 compared to nivolumab or ipilimumab monotreatment (p < 0.001). In conclusion, a combination of immune checkpoint inhibition with CIK cells augments cytotoxicity of CIK cells against renal cancer cells.
Survival of patients with pediatric acute lymphoblastic leukemia (ALL) after allogeneic hematopoietic stem cell transplantation (allo-SCT) is mainly compromised by leukemia relapse, carrying dismal prognosis. As novel individualized therapeutic approaches are urgently needed, we performed whole-exome sequencing of leukemic blasts of 10 children with post–allo-SCT relapses with the aim of thoroughly characterizing the mutational landscape and identifying druggable mutations. We found that post–allo-SCT ALL relapses display highly diverse and mostly patient-individual genetic lesions. Moreover, mutational cluster analysis showed substantial clonal dynamics during leukemia progression from initial diagnosis to relapse after allo-SCT. Only very few alterations stayed constant over time. This dynamic clonality was exemplified by the detection of thiopurine resistance-mediating mutations in the nucleotidase NT5C2 in 3 patients’ first relapses, which disappeared in the post–allo-SCT relapses on relief of selective pressure of maintenance chemotherapy. Moreover, we identified TP53 mutations in 4 of 10 patients after allo-SCT, reflecting acquired chemoresistance associated with selective pressure of prior antineoplastic treatment. Finally, in 9 of 10 children’s post–allo-SCT relapse, we found alterations in genes for which targeted therapies with novel agents are readily available. We could show efficient targeting of leukemic blasts by APR-246 in 2 patients carrying TP53 mutations. Our findings shed light on the genetic basis of post–allo-SCT relapse and may pave the way for unraveling novel therapeutic strategies in this challenging situation.
Intact Transition Epitope Mapping - Targeted High-Energy Rupture of Extracted Epitopes (ITEM-THREE)
(2019)
Epitope mapping, which is the identification of antigenic determinants, is essential for the design of novel antibody-based therapeutics and diagnostic tools. ITEM-THREE is a mass spectrometry-based epitope mapping method that can identify epitopes on antigens upon generating an immune complex in electrospray-compatible solutions by adding an antibody of interest to a mixture of peptides from which at least one holds the antibody's epitope. This mixture is nano-electrosprayed without purification. Identification of the epitope peptide is performed within a mass spectrometer that provides an ion mobility cell sandwiched in-between two collision cells and where this ion manipulation setup is flanked by a quadrupole mass analyzer on one side and a time-of-flight mass analyzer on the other side. In a stepwise fashion, immune-complex ions are separated from unbound peptide ions and dissociated to release epitope peptide ions. Immune complex-released peptide ions are separated from antibody ions and fragmented by collision induced dissociation. Epitope-containing peptide fragment ions are recorded, and mass lists are submitted to unsupervised data base search thereby retrieving both, the amino acid sequence of the epitope peptide and the originating antigen. ITEM-THREE was developed with antiTRIM21 and antiRA33 antibodies for which the epitopes were known, subjecting them to mixtures of synthetic peptides of which one contained the respective epitope. ITEM-THREE was then successfully tested with an enzymatic digest of His-tagged recombinant human β-actin and an antiHis-tag antibody, as well as with an enzymatic digest of recombinant human TNFα and an antiTNFα antibody whose epitope was previously unknown.
Amino acids perform multiple essential physiological roles in humans, and accordingly, their importance to health has been the subject of extensive attention. In this special issue of the Journal of Nutrition and Metabolism, we focus on the various inborn errors of amino acid metabolism, their diagnostic challenges, new treatment approaches, and recent advances in patient monitoring as well as clinical outcomes.
In 2018, in the US alone, it is estimated that 268,670 people will be diagnosed with breast cancer, and that 41,400 will die from it. Since breast cancers often become resistant to therapies, and certain breast cancers lack therapeutic targets, new approaches are urgently required. A cell-stress response pathway, the unfolded protein response (UPR), has emerged as a promising target for the development of novel breast cancer treatments. This pathway is activated in response to a disturbance in endoplasmic reticulum (ER) homeostasis but has diverse physiological and disease-specific functions. In breast cancer, UPR signalling promotes a malignant phenotype and can confer tumours with resistance to widely used therapies. Here, we review several roles for UPR signalling in breast cancer, highlighting UPR-mediated therapy resistance and the potential for targeting the UPR alone or in combination with existing therapies.
Amaç: Keton cisim oluşumu (ketogenez) bozuklukları; mitokondriyel 3-hidroksi-3metil glutaril CoA sentaz (Mhs) ve 3-hidroksi-3-metil glutaril CoA liyaz (HL) enzim eksiklikleri sonucu oluşur. Keton cisim yıkımı (ketoliz) bozuklukları ise suksinil CoA: 3 oksoasit CoA transferaz (SCOT) ve asetoasetil CoA thiolaz-beta ketotiolaz (MAT) enzim eksiklikleri sonucu oluşmaktadır. Keton metabolizma bozukluğu tanısıyla izlenen hastaların klinik ve laboratuvar bulguları ile değerlendirilmesi amaçlandı.
Yöntem: Keton metabolizması bozukluğu tanısıyla izlenen hasta verileri retrospektif olarak incelendi.
Bulgular: Dört hastada HL eksikliği, 3 hastada MAT eksikliği ve 2 hastada SCOT eksikliği tanısı mevcuttu. Hastaların ortanca yaşı 5 yıl (6 ay-15,5 yıl), ilk metabolik dekompanzasyon atak yaşı ortalama 7,7 ay (22 gün-19 ay) idi. MAT eksikliği olan bir hasta, kardeş taraması ile asemptomatik dönemde tanı aldı. İki hastada spastik tetraparezi gibi ağır nörolojik defisit gelişti. Dekompanzasyon ataklarının beslenememe, kusma ve gastroenterit gibi infeksiyon sonrası geliştiği görüldü.
Sonuç: Açıklanamayan metabolik asidoz atakları durumunda keton metabolizma bozuklukları akılda tutulmalıdır. Akut dekompanzasyon değişik yaşlarda ortaya çıkabilir, klinik şiddeti değişken olabilir. Erken tanı ve uygun tedavi mortalite ve morbidite açısından çok önemlidir.
Once aberrantly activated, the Wnt/βcatenin pathway may result in uncontrolled proliferation and eventually cancer. Efforts to counter and inhibit this pathway are mainly directed against βcatenin, as it serves a role on the cytoplasm and the nucleus. In addition, speciallygenerated lymphocytes are recruited for the purpose of treating liver cancer. Peripheral blood mononuclear lymphocytes are expanded by the timely addition of interferon γ, interleukin (IL)1β, IL2 and anticluster of differentiation 3 antibody. The resulting cells are called cytokineinduced killer (CIK) cells. The present study utilised these cells and combine them with drugs inhibiting the Wnt pathway in order to examine whether this resulted in an improvement in the killing ability of CIK cells against liver cancer cells. Drugs including ethacrynic acid (EA) and ciclopirox olamine (CPX) were determined to be suitable candidates, as determined by previous studies. Drugs were administered on their own and combined with CIK cells and then a cell viability assay was performed. These results suggest that EAtreated cells demonstrated apoptosis and were significantly affected compared with untreated cells. Unlike EA, CPX killed normal and cancerous cells even at low concentrations. Subsequent to combining EA with CIK cells, the potency of killing was increased and a greater number of cells died, which proves a synergistic action. In summary, EA may be used as an antihepatocellular carcinoma drug, while CPX possesses a high toxicity to cancerous as well as to normal cells. It was proposed that EA should be integrated into present therapeutic methods for cancer.
Triple-negative breast cancer (TNBC) lacks targeted therapies and has a worse prognosis than other breast cancer subtypes, underscoring an urgent need for new therapeutic targets and strategies. IRE1 is an endoplasmic reticulum (ER) stress sensor, whose activation is predominantly linked to the resolution of ER stress and, in the case of severe stress, to cell death. Here we demonstrate that constitutive IRE1 RNase activity contributes to basal production of pro-tumorigenic factors IL-6, IL-8, CXCL1, GM-CSF, and TGFβ2 in TNBC cells. We further show that the chemotherapeutic drug, paclitaxel, enhances IRE1 RNase activity and this contributes to paclitaxel-mediated expansion of tumor-initiating cells. In a xenograft mouse model of TNBC, inhibition of IRE1 RNase activity increases paclitaxel-mediated tumor suppression and delays tumor relapse post therapy. We therefore conclude that inclusion of IRE1 RNase inhibition in therapeutic strategies can enhance the effectiveness of current chemotherapeutics.
The elucidation of conformations and relative potential energies (rPEs) of small molecules has a long history across a diverse range of fields. Periodically, it is helpful to revisit what conformations have been investigated and to provide a consistent theoretical framework for which clear comparisons can be made. In this paper, we compute the minima, first- and second-order saddle points, and torsion-coupled surfaces for methanol, ethanol, propan-2-ol, and propanol using consistent high-level MP2 and CCSD(T) methods. While for certain molecules more rigorous methods were employed, the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pV5Z theory level was used throughout to provide relative energies of all minima and first-order saddle points. The rPE surfaces were uniformly computed at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ level. To the best of our knowledge, this represents the most extensive study for alcohols of this kind, revealing some new aspects. Especially for propanol, we report several new conformations that were previously not investigated. Moreover, two metrics are included in our analysis that quantify how the selected surfaces are similar to one another and hence improve our understanding of the relationship between these alcohols.
Major progress occurred in understanding inborn errors of ketone body transport and metabolism between the International Congresses on Inborn Errors of Metabolism in Barcelona (2013) and Rio de Janeiro (2017). These conditions impair either ketogenesis (presenting as episodes of hypoketotic hypoglycemia) or ketolysis (presenting as ketoacidotic episodes); for both groups, immediate intravenous glucose administration is the most critical and (mHGGCS, HMGCS2) effective treatment measure.
3-Hydroxy-3-methylglutaryl-coenzyme A lyase (HMGCL, HMGCL) deficiency is a rare inborn error of ketogenesis. Even if the ketogenic enzyme is fully disrupted, an elevated signal for the ketone body acetoacetic acid is a frequent observation in the analysis of urinary organic acids, at least if derivatization is performed by methylation. We provide an explanation for this phenomenon and trace it back to degradation of the derivatized 3-hydroxy-3-methylglutaric acid and high temperature of the injector of the gas chromatograph.
In silico Epitope Mapping of Glucose-6-Phosphate Isomerase: A Rheumatoid Arthritis Autoantigen
(2017)
Rheumatoid arthritis-like symptoms can be initiated experimentally in naive K/BxN mice by simultaneously administering the two monoclonal antibodies 11H3 and 46H9. Both antibodies specifically recognize Glucose-6-Phosphate Isomerase (GPI), a known auto antigen in RA patients. Amino acid sequences of the Fv parts of the antibodies were determined by translating the respective hybridoma DNA sequences and served for threedimensional structure modeling of the paratope regions. In silico docking of both Fv antibody structure models to the X-ray structures of the homodimeric murine GPI as well as to the homodimeric human GPI predicted the murine epitope of the 11H3 antibodies to comprise partial amino acid sequences QRVRSGDWKGYTGKS (aa134-148) and AAKDPSAVAK (aa232-241), generating an assembled (conformational) epitope. The 11H3 epitope on human GPI encompasses the matching partial amino acid sequences QRVRSGDWKGYTGKT (aa134-148) and AAKDPSAVAK (aa232-241). The epitope of the 46H9 antibody was determined to consist of the partial murine GPI amino acid sequence RKELQAAGKSPEDLEK (aa446-461) and the human GPI amino acid sequence RKELQAAGKSPEDLER (aa446-461), respectively, resembling consecutive (linear) epitopes. The predicted epitopes were verified by mass spectrometric epitope mapping using synthetic epitope peptides. Peptide QRVRSGDWKGYTGKS[GSMSGS] AAKDPSAAK included a small spacer sequence in between the epitope sequences, mimicking the assembled epitope for the 11H3 antibody. The peptide RKELQAAGKSPEDLEK represented the consecutive epitope for the 46H9 antibody. The determined B-cell epitopes of GPI and their interactions with the monoclonal antibodies provide a detailed structural understanding of immunological disease onset mechanisms in a mouse model of rheumatoid arthritis.
Multiple myeloma is the second most common hematological malignancy. Despite all the progress made in treating multiple myeloma, it still remains an incurable disease. Patients are left with a median survival of 4-5 years. The combined treatment of multiple myeloma with histone deacetylase inhibitors and cytokine-induced killer cells provides a promising targeted treatment option for patients. This study investigated the impact of a combined treatment compared to treatment with histone deacetylase inhibitors. The experiments revealed that a treatment with histone deacetylase (HDAC) inhibitors could reduce cell viability to 59% for KMS 18 cell line and 46% for the U-266 cell line. The combined treatment led to a decrease of cell viability to 33% for KMS 18 and 27% for the U-266 cell line, thus showing a significantly better efficacy than the single treatment.
Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis
(2017)
Recessive mutations in the MPV17 gene cause mitochondrial DNA depletion syndrome, a fatal infantile genetic liver disease in humans. Loss of function in mice leads to glomerulosclerosis and sensineural deafness accompanied with mitochondrial DNA depletion. Mutations in the yeast homolog Sym1, and in the zebra fish homolog tra cause interesting, but not obviously related phenotypes, although the human gene can complement the yeast Sym1 mutation. The MPV17 protein is a hydrophobic membrane protein of 176 amino acids and unknown function. Initially localised in murine peroxisomes, it was later reported to be a mitochondrial inner membrane protein in humans and in yeast. To resolve this contradiction we tested two new mouse monoclonal antibodies directed against the human MPV17 protein in Western blots and immunohistochemistry on human U2OS cells. One of these monoclonal antibodies showed specific reactivity to a protein of 20 kD absent in MPV17 negative mouse cells. Immunofluorescence studies revealed colocalisation with peroxisomal, endosomal and lysosomal markers, but not with mitochondria. This data reveal a novel connection between a possible peroxisomal/endosomal/lysosomal function and mitochondrial DNA depletion.
Beta-ketothiolase deficiency, also known as mitochondrial acetoacetyl-CoA thiolase (T2) deficiency, is an autosomal recessive disease caused by mutations in the acetylCoA acetyltransferase 1 (ACAT1) gene. A German T2deficient patient that developed a severe ketoacidotic episode at the age of 11 months, was revealed to be a compound heterozygote of a previously reported null mutation, c.472A>G (p.N158D) and a novel mutation, c.949G>A (p.D317N), in ACAT1. The c.949G>A mutation was suspected to cause aberrant splicing as it is located within an exonic splicing enhancer sequence (c. 947CTGACGC) that is a potential binding site for serine/argininerich splicing factor 1. A mutation in this sequence, c.951C>T, results in exon 10 skipping. A minigene construct was synthesized that included exon 9truncated intron 9exon 10truncated intron 10exon 11, and the splicing of this minigene revealed that the c.949G>A mutant construct caused exon 10 skipping in a proportion of the transcripts. Furthermore, additional substitution of G for C at the first nucleotide of exon 10 (c.941G>C) abolished the effect of the c.949G>A mutation. Transient expression analysis of the c.949G>A mutant cDNA revealed no residual T2 activity in the mutated D317N enzyme. Therefore, c.949G>A (D317N) is a pathogenic missense mutation, and diminishes the effect of an exonic splicing enhancer and causes exon 10 skipping. The present study demonstrates that a missense mutation, or even a synonymous substitution, may disrupt enzyme function by interference with splicing.
Brentuximab vedotin (SGN-35) is an antibody–drug conjugate with a high selectivity against CD30+ cell lines and more than 300-fold less activity against antigen-negative cells. In the last years, the results of many in vitro and in vivo studies have led to the fast approval of this drug to treat lymphoma patients. Another innovative method to treat tumor cells including lymphoma cells is the use cytokine-induced killer (CIK) cells, which have also been approved and proven to be a safe treatment with only minor adverse events. In this study, a possible additive effect when combining SGN-35 with CIK cells was investigated. The combinational treatment showed that it reduces the viability of CD30+ cell lines significantly in vitro. Additionally, the amount of lymphoma cells was significantly reduced when exposed to CIK cells as well as when exposed to SGN-35. A significant negative effect of SGN-35 on the function of CIK cells could be excluded. These results lead to the assumption that SGN-35 and CIK cells in combination might achieve better results in an in vitro setting compared to the single use of SGN-35 and CIK cells. Further investigations in in vivo models must be conducted to obtain a better understanding of the exact mechanisms of both treatments when applied in combination.