IngenieurNachwuchs 2015: PersoImplant - Personalisierte zellbesiedelte Implantate für Knochendefekte mit 'kritischer Größe' (DE/BMBF/03FH019IX5,13FH019IX5)
Refine
H-BRS Bibliography
- yes (22)
Departments, institutes and facilities
Document Type
- Article (16)
- Part of a Book (5)
- Report (1)
Year of publication
Keywords
- stem cells (6)
- drug release (5)
- angiogenesis (4)
- bone tissue engineering (3)
- osteogenesis (3)
- scaffolds (3)
- Biomineralization (2)
- Mesenchymal stem cells (2)
- Tissue engineering (2)
- biomaterial (2)
The goal of this study was to explore a route for introducing functionalities into agarose-based hydrogels to tune the physical, chemical, and biological properties. Several agarose derivatives were prepared by homogeneous synthesis, including anionic agarose sulfates (ASs), reactive azido agaroses (AZAs), and cationic agarose carbamates (ACs), as well as agarose tosylates (ATOSs) and agarose phenyl carbonates (APhCs). The products were characterized in terms of their molecular structure and solubility behavior. The results suggest that the native gel-forming ability of agarose is retained if the introduced functionalities are hydrophilic, and the overall degree of substitution is low (DS < 0.5). Thus, functional hydrogels from several agarose derivatives could be obtained. The mechanical stability of the functional hydrogels was decreased compared to native agarose gels but was still in a range that enables safe handling. An increase in mechanical strength could be achieved by blending functional agarose derivatives and agarose into composite hydrogels. Finally, it was demonstrated that the novel functional agarose hydrogels are biocompatible and can potentially stimulate interactions with cells and tissue.
Bone is a metabolically dynamic structure that is generally remodeled throughout the lifetime of an individual but often causes problems with increasing age. A key player for bone development and homeostasis, but also under pathological conditions, is the bone vasculature. This complex system of arteries, veins, and capillaries forms distinct structures where each subset of endothelial cells has important functions. Starting with the basic process of angiogenesis and bonespecific blood vessel formation, coupled with initial bone formation, the importance of different vascular structures is highlighted with respect to how these structures are maintained or changed during homeostasis, aging, and pathological conditions. After exemplifying the current knowledge on bone vasculature, this review will move on to exosomes, a novel hotspot of scientific research. Exosomes will be introduced starting from their discovery via current isolation procedures and state-of-the-art characterization to their role in bone vascular development, homeostasis, and bone regeneration and repair while summarizing the underlying signal transduction pathways. With respect to their role in these processes, especially mesenchymal stem cell-derived extracellular vesicles are of interest, which leads to a discussion on patented applications and an update on ongoing clinical trials. Taken together, this review provides an overview of bone vasculature and bone regeneration, with a major focus on how exosomes influence this intricate system, as they might be useful for therapeutic purposes in the near future.
Das Projekt adressiert ein Problem aus dem Bereich Medizintechnologie (ein NRW-Förderschwerpunkt): die Entwicklung eines für Patienten maßgeschneiderten Gewebeersatzmaterials, ein Knochensurrogat. Kritische (“critical size“) Knochendefekte stellen ein signifikantes Gesundheitsproblem dar, das durch die zurzeit gängigen Knochenersatzmaterialien nicht bzw. nicht effizient therapiert werden kann. Kritische Knochendefekte werden mit artifiziellen Biomaterialien behandelt, die bislang eine unzureichende Regenerationskapazität aufweisen.
Therapeutic Treatments for Osteoporosis-Which Combination of Pills Is the Best among the Bad?
(2022)
Osteoporosis is a chronical, systemic skeletal disorder characterized by an increase in bone resorption, which leads to reduced bone density. The reduction in bone mineral density and therefore low bone mass results in an increased risk of fractures. Osteoporosis is caused by an imbalance in the normally strictly regulated bone homeostasis. This imbalance is caused by overactive bone-resorbing osteoclasts, while bone-synthesizing osteoblasts do not compensate for this. In this review, the mechanism is presented, underlined by in vitro and animal models to investigate this imbalance as well as the current status of clinical trials. Furthermore, new therapeutic strategies for osteoporosis are presented, such as anabolic treatments and catabolic treatments and treatments using biomaterials and biomolecules. Another focus is on new combination therapies with multiple drugs which are currently considered more beneficial for the treatment of osteoporosis than monotherapies. Taken together, this review starts with an overview and ends with the newest approaches for osteoporosis therapies and a future perspective not presented so far.
Dental stem cells have been isolated from the medical waste of various dental tissues. They have been characterized by numerous markers, which are evaluated herein and differentiated into multiple cell types. They can also be used to generate cell lines and iPSCs for long-term in vitro research. Methods for utilizing these stem cells including cellular systems such as organoids or cell sheets, cell-free systems such as exosomes, and scaffold-based approaches with and without drug release concepts are reported in this review and presented with new pictures for clarification. These in vitro applications can be deployed in disease modeling and subsequent pharmaceutical research and also pave the way for tissue regeneration. The main focus herein is on the potential of dental stem cells for hard tissue regeneration, especially bone, by evaluating their potential for osteogenesis and angiogenesis, and the regulation of these two processes by growth factors and environmental stimulators. Current in vitro and in vivo publications show numerous benefits of using dental stem cells for research purposes and hard tissue regeneration. However, only a few clinical trials currently exist. The goal of this review is to pinpoint this imbalance and encourage scientists to pick up this research and proceed one step further to translation.
With increasing life expectancy, demands for dental tissue and whole-tooth regeneration are becoming more significant. Despite great progress in medicine, including regenerative therapies, the complex structure of dental tissues introduces several challenges to the field of regenerative dentistry. Interdisciplinary efforts from cellular biologists, material scientists, and clinical odontologists are being made to establish strategies and find the solutions for dental tissue regeneration and/or whole-tooth regeneration. In recent years, many significant discoveries were done regarding signaling pathways and factors shaping calcified tissue genesis, including those of tooth. Novel biocompatible scaffolds and polymer-based drug release systems are under development and may soon result in clinically applicable biomaterials with the potential to modulate signaling cascades involved in dental tissue genesis and regeneration. Approaches for whole-tooth regeneration utilizing adult stem cells, induced pluripotent stem cells, or tooth germ cells transplantation are emerging as promising alternatives to overcome existing in vitro tissue generation hurdles. In this interdisciplinary review, most recent advances in cellular signaling guiding dental tissue genesis, novel functionalized scaffolds and drug release material, various odontogenic cell sources, and methods for tooth regeneration are discussed thus providing a multi-faceted, up-to-date, and illustrative overview on the tooth regeneration matter, alongside hints for future directions in the challenging field of regenerative dentistry.
Mesenchymal Stem Cells
(2020)
Bone tissue engineering is an ever-changing, rapidly evolving, and highly interdisciplinary field of study, where scientists try to mimic natural bone structure as closely as possible in order to facilitate bone healing. New insights from cell biology, specifically from mesenchymal stem cell differentiation and signaling, lead to new approaches in bone regeneration. Novel scaffold and drug release materials based on polysaccharides gain increasing attention due to their wide availability and good biocompatibility to be used as hydrogels and/or hybrid components for drug release and tissue engineering. This article reviews the current state of the art, recent developments, and future perspectives in polysaccharide-based systems used for bone regeneration.
Scratch assays enable the study of the migration process of an injured adherent cell layer in vitro. An apparatus for the reproducible performance of scratch assays and cell harvesting has been developed that meets the requirements for reproducibility in tests as well as easy handling. The entirely autoclavable setup is divided into a sample translation and a scratching system. The translational system is compatible with standard culture dishes and can be modified to adapt to different cell culture systems, while the scratching system can be adjusted according to angle, normal force, shape, and material to adapt to specific questions and demanding substrates. As a result, a fully functional prototype can be presented. This system enables the creation of reproducible and clear scratch edges with a low scratch border roughness within a monolayer of cells. Moreover, the apparatus allows the collection of the migrated cells after scratching for further molecular biological investigations without the need for a second processing step. For comparison, the mechanical properties of manually performed scratch assays are evaluated.
Healing of large bone defects requires implants or scaffolds that provide structural guidance for cell growth, differentiation, and vascularization. In the present work, an agarose-hydroxyapatite composite scaffold was developed that acts not only as a 3D matrix, but also as a release system. Hydroxyapatite (HA) was incorporated into the agarose gels in situ in various ratios by a simple procedure consisting of precipitation, cooling, washing, and drying. The resulting gels were characterized regarding composition, porosity, mechanical properties, and biocompatibility. A pure phase of carbonated HA was identified in the scaffolds, which had pore sizes of up to several hundred micrometers. Mechanical testing revealed elastic moduli of up to 2.8 MPa for lyophilized composites. MTT testing on Lw35human mesenchymal stem cells (hMSCs) and osteosarcoma MG-63 cells proved the biocompatibility of the scaffolds. Furthermore, scaffolds were loaded with model drug compounds for guided hMSC differentiation. Different release kinetic models were evaluated for adenosine 5′-triphosphate (ATP) and suramin, and data showed a sustained release behavior over four days.
Bioinspired stem cell-based hard tissue engineering includes numerous aspects: The synthesis and fabrication of appropriate scaffold materials, their analytical characterization, and guided osteogenesis using the sustained release of osteoinducing and/or osteoconducting drugs for mesenchymal stem cell differentiation, growth, and proliferation. Here, the effect of silicon- and silicate-containing materials on osteogenesis at the molecular level has been a particular focus within the last decade. This review summarizes recently published scientific results, including material developments and analysis, with a special focus on silicon hybrid bone composites. First, the sources, bioavailability, and functions of silicon on various tissues are discussed. The second focus is on the effects of calcium-silicate biomineralization and corresponding analytical methods in investigating osteogenesis and bone formation. Finally, recent developments in the manufacturing of Si-containing scaffolds are discussed, including in vitro and in vivo studies, as well as recently filed patents that focus on the influence of silicon on hard tissue formation.
Small Molecules Enhance Scaffold-Based Bone Grafts via Purinergic Receptor Signaling in Stem Cells
(2018)
The need for bone grafts is high, due to age-related diseases, such as tumor resections, but also accidents, risky sports, and military conflicts. The gold standard for bone grafting is the use of autografts from the iliac crest, but the limited amount of accessible material demands new sources of bone replacement. The use of mesenchymal stem cells or their descendant cells, namely osteoblast, the bone-building cells and endothelial cells for angiogenesis, combined with artificial scaffolds, is a new approach. Mesenchymal stem cells (MSCs) can be obtained from the patient themselves, or from donors, as they barely cause an immune response in the recipient. However, MSCs never fully differentiate in vitro which might lead to unwanted effects in vivo. Interestingly, purinergic receptors can positively influence the differentiation of both osteoblasts and endothelial cells, using specific artificial ligands. An overview is given on purinergic receptor signaling in the most-needed cell types involved in bone metabolism-namely osteoblasts, osteoclasts, and endothelial cells. Furthermore, different types of scaffolds and their production methods will be elucidated. Finally, recent patents on scaffold materials, as wells as purinergic receptor-influencing molecules which might impact bone grafting, are discussed.
Renewable resources are gaining increasing interest as a source for environmentally benign biomaterials, such as drug encapsulation/release compounds, and scaffolds for tissue engineering in regenerative medicine. Being the second largest naturally abundant polymer, the interest in lignin valorization for biomedical utilization is rapidly growing. Depending on its resource and isolation procedure, lignin shows specific antioxidant and antimicrobial activity. Today, efforts in research and industry are directed toward lignin utilization as a renewable macromolecular building block for the preparation of polymeric drug encapsulation and scaffold materials. Within the last five years, remarkable progress has been made in isolation, functionalization and modification of lignin and lignin-derived compounds. However, the literature so far mainly focuses lignin-derived fuels, lubricants and resins. The purpose of this review is to summarize the current state of the art and to highlight the most important results in the field of lignin-based materials for potential use in biomedicine (reported in 2014⁻2018). Special focus is placed on lignin-derived nanomaterials for drug encapsulation and release as well as lignin hybrid materials used as scaffolds for guided bone regeneration in stem cell-based therapies.
Background and Objectives: In advanced β-cell dysfunction, proinsulin is increasingly replacing insulin as major component of the secretion product. It has been speculated that proinsulin has at least the same adipogenic potency than insulin, leading to an increased tendency of lipid tissue formation in patients with late stage β-cell dysfunction. Methods and Results: Mesenchymal stem cells obtained from liposuction material were grown in differentiation media containing insulin (0.01 μmol), proinsulin (0.01 μmol) or insulin+proinsulin (each 0.005 μmol). Cell culture supernatants were taken from these experiments and an untreated control at weeks 1, 2, and 3, and were stored at -80°C until analysis. Cell differentiation was microscopically supervised and adiponectin concentrations were measured as marker for differentiation into mature lipid cells. This experiment was repeated three times. No growth of lipid cells and no change in adiponectin values was observed in the negative control group (after 7/14/12 days: 3.2±0.5/3.3±0.1/4.4±0.5 ng/ml/12 h). A continuous differentiation into mature adipocytes (also confirmed by Red-Oil-staining) and a corresponding increase in adiponectin values was observed in the experiments with insulin (3.6±1.9/5.1±1.4/13.3±1.5 ng/ml/12 h; p<0.05 week 1 vs. week 3) and proinsulin (3.3±1.2/3.5±0.3/12.2±1.2 ng/ml/12 h; p<0.05). Comparable effects were seen with the insulin/proinsulin combination. Conclusions: Proinsulin has the same adipogenic potential than insulin in vitro. Proinsulin has only 10∼20% of the glucose-lowering effect of insulin. It can be speculated that the adipogenic potential of proinsulin may be a large contributor to the increased body weight problems in patients with type 2 diabetes and advanced β-cell dysfunction.
Bone regeneration and replacement is a major focus in regenerative medicine since degenerative diseases and tumor surgery as well as accidents or dangerous recreational behavior is leading to an increasing need for bone reconstruction strategies. Especially for critical size bone defects, tissue engineering with mesenchymal stem cells is extensively studied because these cells are functioning as precursors for osteoblast in vivo. Nevertheless to reproduce the complex interaction of various factors in vitro is not an easy approach and further investigations have to be done. The status quo is summarized. A variety of growth and transcription factors are known to be involved in osteogenesis with bone morphogenetic proteins (BMPs) and the transcription factor Runx2 being the most extensively studied ones. But also PPAR γ and Osterix are generally regarded as the master regulators of osteoblast differentiation. Recently the large family of purinergic receptors has proven to be essential molecules in osteogenesis as well. In addition, scaffolding is needed to create a three-dimensional tissue. Recent developments in scaffold design are summarized, including natural and synthetic materials with or without the use of bioactive molecules constructed to mimic the natural environment. The status quo of scaffold fabrication methods such as 3D nanoprinting and their influence on cell-scaffold interactions is discussed. In this review we summarize the most interesting results and our related work focusing on two joined approaches: 1) the complex interaction of the most promising factors improving or accelerating osteogenic differentiation and ii) the development of scaffold materials with osteoconductive and osteoinductive properties.