Allianz- und Nationallizenzen: Diese Beiträge sind mit Zustimmung der Rechteinhaber aufgrund einer DFG-geförderten National- bzw. Allianzlizenz frei zugänglich.
Refine
H-BRS Bibliography
- yes (7)
Departments, institutes and facilities
Document Type
- Article (7)
Has Fulltext
- yes (7)
Keywords
- Breast cancer (1)
- CDKN1B (1)
- Chemotherapy (1)
- Corporate social responsibility (1)
- Corporate sustainability (1)
- First-order frequency domain sensitivities (1)
- German real estate industry (1)
- Germany (1)
- IEEE 802.11 (1)
- Incremental bond graph (1)
The combination of Software-Defined Networking (SDN) and Wireless Mesh Network (WMN) is challenging due to the different natures of both concepts. SDN describes networks with homogeneous, static and centralized controlled topologies. In contrast, a WMN is characterized by a dynamic and distributed network control, and adds new challenges with respect to time-critical operation. However, SDN and WMN are both associated with decreasing the operational costs for communication networks which is especially beneficial for internet provisioning in rural areas. This work surveys the current status for Software-Defined Wireless Mesh Networking. Besides a general overview in the domain of wireless SDN, this work focuses especially on different identified aspects: representing and controlling wireless interfaces, control-plane connection and topology discovery, modulation and coding, routing and load-balancing and client handling. A complete overview of surveyed solutions, open issues and new research directions is provided with regard to each aspect.
Purpose – The aim of the study is to investigate the implementation of corporate sustainability (CS) in the German real estate sector.
Design/methodology/approach – The authors begin by outlining the framework set by the European Union and the German Federal Government for companies wanting to be classified as sustainable. After this, the relevance of sustainability for German real estate companies is discussed. Their empirical section contains an international comparison. Finally, they present an analysis checking the implementation of CS for the main 135 German real estate companies.
Findings – The present analysis shows that German real estate companies compare well with their international counterparts, in 2012 representing 15 per cent of all real estate firms reporting on the basis of the Global Reporting Initiative. However, of the 135 companies in Germany surveyed, only a small proportion classify themselves as CS and CSR (corporate social responsibility) enterprises. This number could be rapidly increased by better documentation of companies’ commitment to sustainability.
Practical implications – The study’s importance lies in the overview it provides of CS activities in the German real estate industry. In addition, it provides hints on how companies can improve their documentation to classify as CSR enterprises. Although the analysis concentrates on Germany, the results are also relevant for companies in other European countries.
Purpose – To describe the development of a novel polyether(meth)acrylate-based resin material class for stereolithography with alterable material characteristics.
Design/methodology/approach – A complete overview of details to composition parameters, the optimization and bandwidth of mechanical and processing parameters is given. Initial biological characterization experiments and future application felds are depicted. Process parameters are studied in a commercial 3D systems Viper stereolithography system, and a new method to determine these parameters is described herein.
Findings – Initial biological characterizations show the non-toxic behavior in a biological environment, caused mainly by the (meth)acrylate-based core components. These photolithographic resins combine an adjustable low Young’s modulus with the advantages of a non-toxic (meth)acrylate-based process material. In contrast to the mostly rigid process materials used today in the rapid prototyping industry, these polymeric formulations are able to fulfll the extended need for a soft engineering material. A short overview of sample applications is given.
Practical implications – These polymeric formulations are able to meet the growing demand for a resin class for rapid manufacturing that covers a bandwidth from softer to stiffer materials.
Originality/value – This paper gives an overview about the novel developed material class for stereolithography and should be therefore of high interest to people with interest in novel rapid manufacturing materials and technology.
Although p27 plays a central role in cell cycle regulation, its role in breast cancer prognosis is controversial. Furthermore, the p27 gene CDKN1B carries a polymorphism with unknown functional relevance. This study was designed to evaluate p27 expression and p27 genotyping with respect to early breast cancer prognosis. 279 patients with infiltrating metastasis-free breast cancer were included in this study. p27 expression was determined in tumor tissue specimens from 261 patients by immunohistochemistry. From 108 patients, the CDKN1B genotype was examined by PCR and subsequent direct sequencing. 55.2% of the tumors were considered p27 positive. p27 expression did not correlate with any of the established parameters except for nodal involvement but significantly correlated to prolonged disease-free survival. In 35% of the tumors analyzed, the CDKN1B gene showed a polymorphism at codon 109 (V109G). The V109G polymorphism correlated with greater nodal involvement. In the node-negative subgroup, V109G correlated significantly with a shortened disease-free survival. In conclusion, the determination of the CDKN1B genotype might be a powerful tool for the prognosis of patients with early breast cancer.
Multidisciplinary systems are described most suitably by bond graphs. In order to determine unnormalized frequency domain sensitivities in symbolic form, this paper proposes to construct in a systematic manner a bond graph from another bond graph, which is called the associated incremental bond graph in this paper. Contrary to other approaches reported in the literature the variables at the bonds of the incremental bond graph are not sensitivities but variations (incremental changes) in the power variables from their nominal values due to parameter changes. Thus their product is power. For linear elements their corresponding model in the incremental bond graph also has a linear characteristic. By deriving the system equations in symbolic state space form from the incremental bond graph in the same way as they are derived from the initial bond graph, the sensitivity matrix of the system can be set up in symbolic form. Its entries are transfer functions depending on the nominal parameter values and on the nominal states and the inputs of the original model. The sensitivities can be determined automatically by the bond graph preprocessor CAMP-G and the widely used program MATLAB together with the Symbolic Toolbox for symbolic mathematical calculation. No particular program is needed for the approach proposed. The initial bond graph model may be non-linear and may contain controlled sources and multiport elements. In that case the sensitivity model is linear time variant and must be solved in the time domain. The rationale and the generality of the proposed approach are presented. For illustration purposes a mechatronic example system, a load positioned by a constant-excitation d.c. motor, is presented and sensitivities are determined in symbolic form by means of CAMP-G/MATLAB.
Bond graph modelling was devised by Professor Paynter at the Massachusetts Institute of Technology in 1959 and subsequently developed into a methodology for modelling multidisciplinary systems at a time when nobody was speaking of object-oriented modelling. On the other hand, so-called object-oriented modelling has become increasingly popular during the last few years. By relating the characteristics of both approaches, it is shown that bond graph modelling, although much older, may be viewed as a special form of object-oriented modelling. For that purpose the new object-oriented modelling language Modelica is used as a working language which aims at supporting multiple formalisms. Although it turns out that bond graph models can be described rather easily, it is obvious that Modelica started from generalized networks and was not designed to support bond graphs. The description of bond graph models in Modelica is illustrated by means of a hydraulic drive. Since VHDL-AMS as an important language standardized and supported by IEEE has been extended to support also modelling of non-electrical systems, it is briefly investigated as to whether it can be used for description of bond graphs. It turns out that currently it does not seem to be suitable.