FH-Kooperativ 2-2019: Resource Optimized Forming (ROForm) (DE/BMBF/13FH514KX9)
Refine
H-BRS Bibliography
- yes (4)
Departments, institutes and facilities
Document Type
- Article (3)
- Conference Object (1)
Language
- English (4)
Keywords
- crystallization (3)
- local chain orientation (3)
- mesoscale coarse-graining (3)
- polyethylene (3)
- relaxation (3)
- biaxial stretching (2)
- shrinkage (1)
- uniaxial stretching (1)
Highly varying process conditions drive polymers into nonequilibrium molecular conformations. This has direct implications for the resulting structural and mechanical properties. This study rigorously investigated processing-property relations from a microscopic perspective. The corresponding models use a mesoscale molecular dynamics (MD) approach. Different loading conditions, including uniaxial and biaxial stretching, along with various cooling conditions, were employed to mimic process conditions on the micro-scale. The resulting intricate interplay between equi-biaxial stretching, orientation, and crystallization behavior in long polyethylene chains was reviewed. The study reveals notable effects depending on different cooling and biaxial stretching procedures. The findings emphasize the significance of considering distributions and directions of chain ordering. Local inspections of trajectories unveil that crystal growth predominantly occurs in regions devoid of entanglements.
This study investigates the initial stage of the thermo-mechanical crystallization behavior for uni- and biaxially stretched polyethylene. The models are based on a mesoscale molecular dynamics approach. We take constraints that occur in real-life polymer processing into account, especially with respect to the blowing stage of the extrusion blow-molding process. For this purpose, we deform our systems using a wide range of stretching levels before they are quenched. We discuss the effects of the stretching procedures on the micro-mechanical state of the systems, characterized by entanglement behavior and nematic ordering of chain segments. For the cooling stage, we use two different approaches which allow for free or hindered shrinkage, respectively. During cooling, crystallization kinetics are monitored: We precisely evaluate how the interplay of chain length, temperature, local entanglements and orientation of chain segments influence crystallization behavior. Our models reveal that the main stretching direction dominates microscopic states of the different systems. We are able to show that crystallization mainly depends on the (dis-)entanglement behavior. Nematic ordering plays a secondary role.
In this study, we investigate the thermo-mechanical relaxation and crystallization behavior of polyethylene using mesoscale molecular dynamics simulations. Our models specifically mimic constraints that occur in real-life polymer processing: After strong uniaxial stretching of the melt, we quench and release the polymer chains at different loading conditions. These conditions allow for free or hindered shrinkage, respectively. We present the shrinkage and swelling behavior as well as the crystallization kinetics over up to 600 ns simulation time. We are able to precisely evaluate how the interplay of chain length, temperature, local entanglements and orientation of chain segments influences crystallization and relaxation behavior. From our models, we determine the temperature dependent crystallization rate of polyethylene, including crystallization onset temperature.