Förderung durch den Publikationsfonds der H-BRS
Refine
H-BRS Bibliography
- yes (37)
Departments, institutes and facilities
- Fachbereich Wirtschaftswissenschaften (12)
- Institut für Technik, Ressourcenschonung und Energieeffizienz (TREE) (12)
- Fachbereich Angewandte Naturwissenschaften (9)
- Fachbereich Ingenieurwissenschaften und Kommunikation (8)
- Fachbereich Informatik (5)
- Institut für Verbraucherinformatik (IVI) (5)
- Internationales Zentrum für Nachhaltige Entwicklung (IZNE) (4)
- Institut für Sicherheitsforschung (ISF) (3)
- Centrum für Entrepreneurship, Innovation und Mittelstand (CENTIM) (2)
- Institute of Visual Computing (IVC) (2)
Document Type
- Article (37)
Has Fulltext
- yes (37)
Keywords
- Mobility (3)
- Modal Shift (3)
- Public Transport (3)
- Bonn (2)
- Environmental benefits (2)
- Household management (2)
- Metal hydride storage (2)
- Quantitative survey (2)
- health intervention (2)
- relaxation (2)
This research paper investigates the temporal and mental workload as well as work satisfaction regarding bureaucratic, administrative household labor, with a focus on socio-demographic differences. The study utilizes a paid online survey with 617 socio-demographically distributed participants. The results show significant differences in the temporal workload of different chore categories and in the quality of work, whereby satisfaction and mental workload are examined. In addition, the influences of gender, age, and education are analyzed, revealing differences in temporal and mental workload as well as work satisfaction. Our findings confirm prevailing literature showing that women have lower work satisfaction and a higher workload. In addition, we also discovered that younger people and groups of people with higher incomes have a higher level of satisfaction and a higher workload. In our study, a perceived high mental workload does not necessarily go hand in hand with a low level of satisfaction. This study contributes to the understanding of the bureaucratic burden on adults in their households and the variety of activities to manage private life.
This study presents a gender-focused perspective of entrepreneurship education programs, aiming to understand variations in entrepreneurial intention, reasoning on entrepreneurship, self-efficacy, and entrepreneurial education preferences. The present research grounds on Entrepreneurial Event Theory to examine entrepreneurial intention, desirability, and feasibility in the context of entrepreneurship education. The research was conducted in Germany in 2021 and included a sample of 156 university students. The study deploys the Mann-Whitney U Test to examine gender differences among university students regarding entrepreneurship. The findings highlight a heightened perception of risk among female students, influencing their focus on positive/negative entrepreneurial events compared to male students. Moreover, the research reveals a greater inclination among females to engage in both curricular and extracurricular entrepreneurship education activities, corroborating previous studies suggesting greater benefits for female students in such programs. The study also underscores the importance of distinguishing between curricular and extracurricular offerings, indicating promising avenues for future entrepreneurship education research. Overall, this investigation contributes new insights and explanations regarding gender dynamics in entrepreneurship education, shedding light on potential areas for further exploration in the field.
Design and characterization of geopolymer foams reinforced with Miscanthus x giganteus fibres
(2024)
This paper presents the results of the optimisation and characterization of Miscanthus fibre reinforced geopolymer foams based on fly ash and represents an important step forward in the development of a sustainable and environmentally friendly insulation material. Miscanthus belongs to a promising group of renewable raw materials with favourable thermal insulation properties. Design of experiment (DoE) were used to optimize the thermal conductivity and compressive strength of Miscanthus x giganteus reinforced geopolymer foams. In addition, the samples was analyzed using X-ray diffraction (XRD), Field emission scanning electron microscopy (SEM) and Fourier-Transform Infrared Spectroscopy (FTIR). Mixtures with a low thermal conductivity of 0.056 W (m K)−1 and a porosity of 79 vol% achieved a compressive strength of only 0.02 MPa. In comparison, mixtures with a thermal conductivity of 0.087 W (m K)−1 and a porosity of 58 vol% achieved a compressive strength of 0.45 MPa. Based on the determined parameters especially due to the low compressive strength, an application as cavity insulation or insulation between rafters is possible.
Push notifications are widely used in Android apps to show users timely and potentially sensitive information outside the apps’ regular user interface. Google’s default service for sending push notifications, Firebase Cloud Messaging (FCM), provides only transport layer security and does not offer app developers message protection schemes to prevent access or detect modifications by the push notification service provider or other intermediate systems.We present and discuss an in-depth mixed-methods study of push notification message security and privacy in Android apps. We statically analyze a representative set of 100,000 up-to-date and popular Android apps from Google Play to get an overview of push notification usage in the wild. In an in-depth follow-up analysis of 60 apps, we gain detailed insights into the leaked content and what some developers do to protect the messages. We find that (a) about half of the analyzed apps use push notifications, (b) about half of the in-depth analyzed messaging apps do not protect their push notifications, allowing access to sensitive data that jeopardizes users’ security and privacy and (c) the means of protection lack a standardized approach, manifesting in various developer-defined encryption schemes, custom protocols, or out-of-band communication methods. Our research highlights gaps in developer-centric security regarding appropriate technologies and supporting measures that researchers and platform providers should address.
Power-to-gas-to-X systems consisting of photovoltaic cells, proton-exchange membrane electrolysis, hydrogen storage based on metal hydrides, proton-exchange membrane fuel cells and buffer batteries could be used to meet heat and electricity demands of homes, businesses, or small districts. The actual size of the individual components and their interplay have to be optimized for the technical and economic feasibility of the overall system. A simulation-based optimization workflow would be a suitable way to accomplish this task, but there are hardly any tools that can simultaneously simulate power, fluid and heat flows of such systems and efficiently perform their optimization. In this paper, a multiphysical energy system simulation and optimization tool is introduced which models electrochemical and thermodynamic processes simultaneously, including modern equations of state and an own numerical solver for the arising differential–algebraic system of equations, and provides new methods for the calibration of parameters of the metal hydride storage, proton-exchange membrane electrolyzer and fuel cell as well as a metamodel-based approach for sizing optimization. As a demonstrator for the novel tool, a simulation model of a hydrogen lab is successfully set up based on experimental results. The novel tool is able to extract polarization and jump curves of the fuel cell, determine a first temperature and pressure dependency of the efficiency of the electrolysis coupled with the metal hydride storage and speed up sizing optimization through metamodeling by a factor 262.1 at 4.9% and 32.7 at 3.3% accuracy.
The air quality in many German cities does not comply with EU-wide standards. Vehicle emissions, in particular, have been identified as an important cause of air pollution. As a result, driving bans for diesel vehicles with critical pollutant groups have been imposed by courts in many places in recent history. Against the backdrop of the growth of major German cities over the last few years, the question has become whether and how a change in the modal split in favor of more environmentally and climate-friendly public transport sector can be achieved. The Federal City of Bonn is one of five model cities that is testing measures to reduce traffic-related nitrogen dioxide emissions through a Climate Ticket as a mobility flat rate for one year for 365 €, which is part of the two-year "Lead City" project funded by the federal government. A quantitative survey (n = 1,315) of Climate Ticket users as well as the logistic regression carried out confirm that a change in individual mobility behavior in favor of public transport is possible by subsidizing the ticket price. The results show that individual traffic could be saved on the city's main congestion axes. In order to achieve a sustainable improvement in air quality, such a Climate Ticket must be granted on a permanent basis, with a well-designed mobility offer and must be generous in terms of the group of authorized persons and the area of validity.
The autocatalyzed ethanolic organosolv process is gaining increasing attention for the sulfur-free isolation of lignin, which is subsequently used as a renewable substitute for various fossil-based applications. For the first time, the mechanochemical influence of seven different particle sizes of two different biomasses on the respective organosolv lignin structure is examined. Wine pruning (Pinot Noir) and wine pomace (Accent) are used for organosolv process with particle sizes ranging from 2.0-1.6 mm to less than 0.25 mm. As particle size decreases, the weight-average molecular weight increases, while the total phenol content decreases significantly. Additionally, the distribution of the lignin-typical monolignols and relevant substructures, as determined by two-dimensional heteronuclear nuclear magnetic resonance spectra single quantum coherence (HSQC), is observed. The degree of grinding of the biomass has a clear chemical-structural influence on the isolated HG and HGS organosolv lignins. Therefore, it is crucial to understand this influence to apply organosolv lignins in a targeted manner. In the future, particle size specifications in the context of the organosolv process should be expressed in terms of distribution densities rather than in terms of a smaller than specification.
A building’s energy storage demand depends on a variety of factors related to the specific local conditions such as building type, self-sufficiency-rate, and grid connection. Here, a newly developed bottom-up procedure is presented for classifying buildings in an urban building portfolio according to specific criteria. The algorithm uses publicly available building data such as building use, ground floor area, roof ridge height, solar roof potential, and population statistics. In addition, it considers the local gas grid (GG) as well as the district heating (DH) network. The building classification is developed for identifying typical building situations that can be used to estimate the demand for residential energy storage capacity. The developed algorithm is used to identify potential implementation of private photovoltaic(PV)-metal-hydride-storage (MHS) systems, for three scenarios, into the urban infrastructure for the city of Cologne. As result the statistical confidence interval of all analyzed buildings regarding their classification as well as corresponding maps is shown. Since similar data sets as used are available for many German or European metropolitan areas, the method developed with the assumptions presented in this work, can be used for classification of other urban and semi-urban areas including the assessment of their grid infrastructure.
The treatment of ultrapure water with electrochemically produced O3 is a common means for disinfection yet leads to the formation of a variety of reactive oxygen species (ROS). The present study draws a comprehensive comparison between three commonly used photometric and fluorometric assays for ROS analysis and quantifies the individual signal responses for dissolved O3, ·OH and H2O2, respectively, to account for cross-sensitivities. By calibrating all combinations of assays and analytes, we developed a quantification procedure to reliably determine the actual ROS composition in ultrapure water environments for different operation conditions of a membrane water electrolyzer with PbO2 anodes down to concentrations of 0.97 μg L−1. While the ·OH formation rate can be described linearly over the observed current density range, substantial O3 evolution is only found for current densities of 0.75 A cm−2 and above (up to 3.7 μmol h−1 for J = 1.25 A cm−2). The formation of H2O2 is only observed when an organic carbon source is introduced into the solution. We further quantify the interference of H2O2 with the reading of the oxidation-reduction potential as a common water parameter and elaborate on its validity to monitor the peroxone process when both H2O2 and O3 are present simultaneously.
Um ein Power-to-Gas-to-X-System effizient zu optimieren, kann ein digitaler Zwilling als Simulationsmodell auf Basis experimenteller Daten für ein Laborsystem erstellt und entsprechend verändert werden. Darüber hinaus müssen für die Überwachung des realen Systems bzw. die Online-Simulation kontinuierlich Daten aus Experiment und Simulation erfasst und verarbeitet werden. Insgesamt ist ein effizienter Datenmanagement-Workflow erforderlich.
In dieser Arbeit wird ein Workflow aus freier, etablierter und skalierbarer Open-Source-Software für die vorliegende Anwendung skizziert und insbesondere ein geeignetes Datenmodell entwickelt, implementiert und seine ressourcensparende Realisierung auf kostengünstiger Hardware gezeigt. Abhängig von der Datenmodellierung kann preiswerte und alte Hardware für die geforderte Aufgabe ausreichend sein.
Mit Apache NiFi wird ein visueller Workflow zum Abrufen und Verarbeiten von Daten aus verschiedenen Quellen geschaffen. Die extrahierten Daten werden in Apache Cassandra aggregiert, einem Datensystem, das aufgrund seiner Leistung, Skalierbarkeit und Haltbarkeit häufig verwendet wird.
Grafana wird zur visuellen Überwachung des Systems eingesetzt. Das gesamte System wird mit Hilfe von Docker-Containern aufgebaut zum Zwecke der Reproduzierbarkeit und effizienten Bereitstellung.
Benchmarks und realistische Hardware- und Datenmodellierungskonfigurationen demonstrieren die Leistung der vorgeschlagenen Lösung.
Explosives detection dog (EDD) teams are deployed at mass events such as concerts, annual general meetings of large listed companies or in air cargo security. However, outside of EU-regulated air cargo, there is no common quality standard for commercial EDD in Germany and many neighboring countries. While law enforcement agencies have access to experienced chemists and can conduct dog training with homemade explosives, small commercial security services do not have comparable capabilities and face additional legal hurdles. The DIN SPEC 77201 was developed within the project to fulfil the need for a generally accepted quality standard. A training workshop was developed and transferred from the academic sector to commercial partners in order to improve training opportunities with home-made explosives, providing new insights for training EDD teams with TATP, HMTD or training aids.
The digitization of financial activities in consumers' lives is increasing, and the digitalization of invoicing processes is expected to play a significant role, although this area is not well understood regarding the private sector. Human-Computer Interaction (HCI) and Computer Supported Cooperative Work (CSCW) research have a long history of analyzing the socio-material and temporal aspects of work practices that are relevant for the domestic domain. The socio-material structuring of invoicing work and the working styles of consumers must be considered when designing effective consumer support systems. In this ethnomethodologically-informed, design-oriented interview study, we followed 17 consumers in their daily practices of dealing with invoices to make the invisible administrative work involved in this process visible. We identified and described the meaningful artifacts that were used in a spatial-temporal process within various storage locations such as input, reminding, intermediate (for postponing cases) buffers, and archive systems. Furthermore, we identified three different working styles that consumers exhibited: direct completion, at the next opportunity, and postpone as far as possible. This study contributes to our understanding of household economics and domestic workplace studies in the tradition of CSCW and has implications for the design of electronic invoicing systems.
This study addresses the common occurrence of cell-to-cell variations arising from manufacturing tolerances and their implications during battery production. The focus is on assessing the impact of these inherent differences in cells and exploring diverse cell and module connection methods on battery pack performance and their subsequent influence on the driving range of electric vehicles (EVs). The analysis spans three battery pack sizes, encompassing various constant discharge rates and nine distinct drive cycles representative of driving behaviours across different regions of India. Two interconnection topologies, categorised as “string” and “cross”, are examined. The findings reveal that cross-connected packs exhibit reduced energy output compared to string-connected configurations, which is reflected in the driving range outcomes observed during drive cycle simulations. Additionally, the study investigates the effects of standard deviation in cell parameters, concluding that an increased standard deviation (SD) leads to decreased energy output from the packs. Notably, string-connected packs demonstrate superior performance in terms of extractable energy under such conditions.
During robot-assisted therapy, a robot typically needs to be partially or fully controlled by therapists, for instance using a Wizard-of-Oz protocol; this makes therapeutic sessions tedious to conduct, as therapists cannot fully focus on the interaction with the person under therapy. In this work, we develop a learning-based behaviour model that can be used to increase the autonomy of a robot’s decision-making process. We investigate reinforcement learning as a model training technique and compare different reward functions that consider a user’s engagement and activity performance. We also analyse various strategies that aim to make the learning process more tractable, namely i) behaviour model training with a learned user model, ii) policy transfer between user groups, and iii) policy learning from expert feedback. We demonstrate that policy transfer can significantly speed up the policy learning process, although the reward function has an important effect on the actions that a robot can choose. Although the main focus of this paper is the personalisation pipeline itself, we further evaluate the learned behaviour models in a small-scale real-world feasibility study in which six users participated in a sequence learning game with an assistive robot. The results of this study seem to suggest that learning from guidance may result in the most adequate policies in terms of increasing the engagement and game performance of users, but a large-scale user study is needed to verify the validity of that observation.
The transport sector is a major source of air pollution and thus a major contributor to the changing climate. As a result, in the recent past, driving bans have been imposed on cars with critical pollutant groups. As an international UN campus and self-proclaimed climate capital, the Federal City of Bonn declared a climate emergency in 2019 and participated in a federally funded “Lead City” project to optimise air quality. A key goal of the project is to reduce private motorised transport and strengthen public transport. Among the implemented measures, a “climate ticket” was introduced in 2019 whereby consumers could purchase an annual 365 € ticket for all local public transport. This paper reports on an analysis of that ticket’s changes in travel behavior.
A quantitative survey (n = 1,315) of the climate ticket users as well as the multiple regressions confirm that the climate ticket attracted more customers to the buses and trams and that a modal shift for the period of the measure was recognisable. The multiple regressions showed that the ticket was perceived significantly more positively by full-time employed users than by unemployed people. The results also show that, in addition to the price, it is essential that travel time and reliability are ensured. Furthermore, the eligible groups of people, the area of coverage, and good connecting services should be extended. To sustainably improve air quality, this type of mobility service must be optimised and introduced on a permanent basis.
Solar photovoltaic power output is modulated by atmospheric aerosols and clouds and thus contains valuable information on the optical properties of the atmosphere. As a ground-based data source with high spatiotemporal resolution it has great potential to complement other ground-based solar irradiance measurements as well as those of weather models and satellites, thus leading to an improved characterisation of global horizontal irradiance. In this work several algorithms are presented that can retrieve global tilted and horizontal irradiance and atmospheric optical properties from solar photovoltaic data and/or pyranometer measurements. The method is tested on data from two measurement campaigns that took place in the Allgäu region in Germany in autumn 2018 and summer 2019, and the results are compared with local pyranometer measurements as well as satellite and weather model data. Using power data measured at 1 Hz and averaged to 1 min resolution along with a non-linear photovoltaic module temperature model, global horizontal irradiance is extracted with a mean bias error compared to concurrent pyranometer measurements of 5.79 W m−2 (7.35 W m−2) under clear (cloudy) skies, averaged over the two campaigns, whereas for the retrieval using coarser 15 min power data with a linear temperature model the mean bias error is 5.88 and 41.87 W m−2 under clear and cloudy skies, respectively.
During completely overcast periods the cloud optical depth is extracted from photovoltaic power using a lookup table method based on a 1D radiative transfer simulation, and the results are compared to both satellite retrievals and data from the Consortium for Small-scale Modelling (COSMO) weather model. Potential applications of this approach for extracting cloud optical properties are discussed, as well as certain limitations, such as the representation of 3D radiative effects that occur under broken-cloud conditions. In principle this method could provide an unprecedented amount of ground-based data on both irradiance and optical properties of the atmosphere, as long as the required photovoltaic power data are available and properly pre-screened to remove unwanted artefacts in the signal. Possible solutions to this problem are discussed in the context of future work.
Electrical signal transmission in power electronic devices takes place through high-purity aluminum bonding wires. Cyclic mechanical and thermal stresses during operation lead to fatigue loads, resulting in premature failure of the wires, which cannot be reliably predicted. The following work presents two fatigue lifetime models calibrated and validated based on experimental fatigue results of an aluminum bonding wire and subsequently transferred and applied to other wire types. The lifetime modeling of Wöhler curves for different load ratios shows good but limited applicability for the linear model. The model can only be applied above 10,000 cycles and within the investigated load range of R = 0.1 to R = 0.7. The nonlinear model shows very good agreement between model prediction and experimental results over the entire investigated cycle range. Furthermore, the predicted Smith diagram is not only consistent in the investigated load range but also in the extrapolated load range from R = −1.0 to R = 0.8. A transfer of both model approaches to other wire types by using their tensile strengths can be implemented as well, although the nonlinear model is more suitable since it covers the entire load and cycle range.
Vehicle emissions have been identified as a cause of air pollution and one of the major reasons why air quality in many large German cities such as Berlin, Bonn, Hamburg, Cologne or Munich does not meet EU-wide limits. As a result, in the recent past, judicial driving bans on diesel vehicles have been imposed in many places since those vehicles emit critical pollutant groups. For the increasing urban population, the challenge is whether and how a change of the modal split in favor of the more environmentally and climate-friendly public transport can be achieved.
This paper presents the case of the Federal City of Bonn, one of five model cities sponsored by the German federal government that are testing measures to reduce traffic-related pollutant emissions by expanding the range of public transport services on offer. We present the results of a quantitative survey (N = 14,296) performed in the Bonn/Rhein-Sieg area and the neighboring municipalities as well as the ensuing logistic regressions confirming that a change in individual mobility behavior in favor of public transport is possible through expanding services. Our results show that individual traffic could be reduced, especially on the city's main traffic axes. To sustainably improve air quality, such services must be made permanently available.
Nitrosamines have been identified as a probable human carcinogen and thus are of high concern in many manufacturing industries and various matrices (for example pharmaceutical, cosmetic and food products, workplace air or potable- and wastewater). This study aims to analyse nine nitrosamines relevant in the field of occupational safety using a gas chromatography-drift tube ion mobility spectrometry (GC-DT-IMS) system. To do this, single nitrosamine standards as well as a standard mix, each at 0.1 g/L, were introduced via liquid injection. A GC-DT-IMS method capable of separating the nitrosamine signals according to retention time (first dimension) and drift time (second dimension) in 10 min was developed. The system shows excellent selectivity as each nitrosamine gives two signals pertaining to monomer and dimer in the second dimension. For the first time, reduced ion mobility values for nitrosamines were determined, ranging from 1.18 to 2.03 cm2s−1V−1. The high selectivity of the GC-DT-IMS method could provide a definite advantage for monitoring nitrosamines in different manufacturing industries and consumer products.
Neutral buoyancy has been used as an analog for microgravity from the earliest days of human spaceflight. Compared to other options on Earth, neutral buoyancy is relatively inexpensive and presents little danger to astronauts while simulating some aspects of microgravity. Neutral buoyancy removes somatosensory cues to the direction of gravity but leaves vestibular cues intact. Removal of both somatosensory and direction of gravity cues while floating in microgravity or using virtual reality to establish conflicts between them has been shown to affect the perception of distance traveled in response to visual motion (vection) and the perception of distance. Does removal of somatosensory cues alone by neutral buoyancy similarly impact these perceptions? During neutral buoyancy we found no significant difference in either perceived distance traveled nor perceived size relative to Earth-normal conditions. This contrasts with differences in linear vection reported between short- and long-duration microgravity and Earth-normal conditions. These results indicate that neutral buoyancy is not an effective analog for microgravity for these perceptual effects.
When optimizing the process parameters of the acidic ethanolic organosolv process, the aim is usually to maximize the delignification and/or lignin purity. However, process parameters such as temperature, time, ethanol and catalyst concentration, respectively, can also be used to vary the structural properties of the obtained organosolv lignin, including the molecular weight and the ratio of aliphatic versus phenolic hydroxyl groups, among others. This review particularly focuses on these influencing factors and establishes a trend analysis between the variation of the process parameters and the effect on lignin structure. Especially when larger data sets are available, as for process temperature and time, correlations between the distribution of depolymerization and condensation reactions are found, which allow direct conclusions on the proportion of lignin's structural features, independent of the diversity of the biomass used. The newfound insights gained from this review can be used to tailor organosolv lignins isolated for a specific application.
Many students approaching adulthood often choose high-calorie food products. Concurrently, health interventions applied during this life phase can potentially lead to a healthier lifestyle. Nudge health interventions in experimental cafeteria settings have been found to improve eating behavior effectively, yet research in real-world settings is lacking. Accepting nudges as health interventions impacts nudge effectiveness. The present study applies a pretest–posttest design for a period of three consecutive weeks (no nudge, nudge, no nudge), testing the effectiveness of the so-called Giacometti cue on the number of calories purchased in a real-world cafeteria. Students were exposed to the nudge during the intervention week when entering the cafeteria and when choosing their meals. After purchasing a meal, their choice was recorded, and they completed a questionnaire. The Giacometti cue immediately reduced the number of calories purchased (comparing weeks one and two). After nudge removal, an effect was identified, increasing the number of calories purchased (comparing weeks two and three). Contrary to expectations, higher nudge acceptance resulted in more calories purchased. Neither awareness of the nudge’s presence when buying food nor the interaction between acceptance and awareness played a role. We explore potential explanations for the Giacometti cue’s effects.
Citizen participation is deemed to be crucial for sustainability and resilience planning. However, generational equity has been missing from recent academic discussions regarding sustainability and resilience. Therefore, the purpose of this paper is to reintroduce the topic of the existence or absence of an intergenerational consensus on the example of a rural community and its perceived brand image attributes and development priorities. The research is based on primary data collected through an online survey, with a sample size of N = 808 respondents in Neunkirchen-Seelscheid, Germany. The data were analyzed using the Kruskal–Wallis test for the presence and/or absence of consensus among the five generations regarding brand image attributes and development priorities. The findings point to divergence between what the median values indicate as the most relevant brand image attributes and development priorities among the citizens and the areas where the Kruskal–Wallis test shows that an intergenerational consensus either does or does not exist. The results imply the need for new concepts and applied approaches to citizen participation for sustainability and resilience, where intergenerational dialogue and equity-building take center stage. In addition to the importance of the theory of citizen participation for sustainability and resilience, our results provide ample evidence for how sustainability and resilience planning documents could potentially benefit from deploying the concept of intergenerational equity. The present research provides sustainability and political science with new conceptual and methodological approaches for taking intergenerational equity into account in regional planning processes in rural and other areas.
Monitoring the content of dissolved ozone in purified water is often mandatory to ensure the appropriate levels of disinfection and sanitization. However, quantification bears challenges as colorimetric assays require laborious off-line analysis, while commercially available instruments for electrochemical process analysis are expensive and often lack the possibility for miniaturization and discretionary installation. In this study, potentiometric ionic polymer metal composite (IPMC) sensors for the determination of dissolved ozone in ultrapure water (UPW) systems are presented. Commercially available polymer electrolyte membranes are treated via an impregnation-reduction method to obtain nanostructured platinum layers. By applying 25 different synthesis conditions, layer thicknesses of 2.2 to 12.6 µm are obtained. Supporting radiographic analyses indicate that the platinum concentration of the impregnation solution has the highest influence on the obtained metal loading. The sensor response behavior is explained by a Langmuir pseudo-isotherm model and allows the quantification of dissolved ozone to trace levels of less than 10 µg L−1. Additional statistical evaluations show that the expected Pt loading and radiographic blackening levels can be predicted with high accuracy and significance (R2adj. > 0.90, p < 10−10) solely from given synthesis conditions.
Rosenbrock–Wanner methods for systems of stiff ordinary differential equations are well known since the seventies. They have been continuously developed and are efficient for differential-algebraic equations of index-1, as well. Their disadvantage that the Jacobian matrix has to be updated in every time step becomes more and more obsolete when automatic differentiation is used. Especially the family of Rodas methods has proven to be a standard in the Julia package DifferentialEquations. However, the fifth-order Rodas5 method undergoes order reduction for certain problem classes. Therefore, the goal of this paper is to compute a new set of coefficients for Rodas5 such that this order reduction is reduced. The procedure is similar to the derivation of the methods Rodas4P and Rodas4P2. In addition, it is possible to provide new dense output formulas for Rodas5 and the new method Rodas5P. Numerical tests show that for higher accuracy requirements Rodas5P always belongs to the best methods within the Rodas family.
Background
Consumers rely heavily on online user reviews when shopping online and cybercriminals produce fake reviews to manipulate consumer opinion. Much prior research focuses on the automated detection of these fake reviews, which are far from perfect. Therefore, consumers must be able to detect fake reviews on their own. In this study we survey the research examining how consumers detect fake reviews online.
Methods
We conducted a systematic literature review over the research on fake review detection from the consumer-perspective. We included academic literature giving new empirical data. We provide a narrative synthesis comparing the theories, methods and outcomes used across studies to identify how consumers detect fake reviews online.
Results
We found only 15 articles that met our inclusion criteria. We classify the most often used cues identified into five categories which were (1) review characteristics (2) textual characteristics (3) reviewer characteristics (4) seller characteristics and (5) characteristics of the platform where the review is displayed.
Discussion
We find that theory is applied inconsistently across studies and that cues to deception are often identified in isolation without any unifying theoretical framework. Consequently, we discuss how such a theoretical framework could be developed.
This research studies in detail four different assays, namely DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)), FRAP (ferric ion reducing antioxidant potential) and FC (Folin-Ciocalteu), to determine the antioxidant capacity of standard substances as well as 50 organosolv lignins, and two kraft lignins. The coefficient of variation was determined for each method and was lowest for ABTS and highest for DPPH. The best correlation was found for FRAP and FC, which both rely on a single electron transfer mechanism. A good correlation between ABTS, FRAP and FC, respectively, could be observed, even though ABTS relies on a more complex reaction mechanism. The DPPH assay merely correlates with the others, implying that it reflects different antioxidative attributes due to a different reaction mechanism. Lignins obtained from paulownia and silphium have been investigated for the first time regarding their antioxidant capacity. Paulownia lignin is in the same range as beech wood lignin, while silphium lignin resembles wheat straw lignin. Miscanthus lignin is an exception from the grass lignins and possesses a significantly higher antioxidant capacity. All lignins possess a good antioxidant capacity and thus are promising candidates for various applications, e. g. as additives in food packaging or for biomedical purposes.
In young adulthood, important foundations are laid for health later in life. Hence, more attention should be paid to the health measures concerning students. A research field that is relevant to health but hitherto somewhat neglected in the student context is the phenomenon of presenteeism. Presenteeism refers to working despite illness and is associated with negative health and work-related effects. The study attempts to bridge the research gap regarding students and examines the effects of and reasons for this behavior. The consequences of digital learning on presenteeism behavior are moreover considered. A student survey (N = 1036) and qualitative interviews (N = 11) were conducted. The results of the quantitative study show significant negative relationships between presenteeism and health status, well-being, and ability to study. An increased experience of stress and a low level of detachment as characteristics of digital learning also show significant relationships with presenteeism. The qualitative interviews highlighted the aspect of not wanting to miss anything as the most important reason for presenteeism. The results provide useful insights for developing countermeasures to be easily integrated into university life, such as establishing fixed learning partners or the use of additional digital learning material.
This study investigates the initial stage of the thermo-mechanical crystallization behavior for uni- and biaxially stretched polyethylene. The models are based on a mesoscale molecular dynamics approach. We take constraints that occur in real-life polymer processing into account, especially with respect to the blowing stage of the extrusion blow-molding process. For this purpose, we deform our systems using a wide range of stretching levels before they are quenched. We discuss the effects of the stretching procedures on the micro-mechanical state of the systems, characterized by entanglement behavior and nematic ordering of chain segments. For the cooling stage, we use two different approaches which allow for free or hindered shrinkage, respectively. During cooling, crystallization kinetics are monitored: We precisely evaluate how the interplay of chain length, temperature, local entanglements and orientation of chain segments influence crystallization behavior. Our models reveal that the main stretching direction dominates microscopic states of the different systems. We are able to show that crystallization mainly depends on the (dis-)entanglement behavior. Nematic ordering plays a secondary role.
Robust Identification and Segmentation of the Outer Skin Layers in Volumetric Fingerprint Data
(2022)
Despite the long history of fingerprint biometrics and its use to authenticate individuals, there are still some unsolved challenges with fingerprint acquisition and presentation attack detection (PAD). Currently available commercial fingerprint capture devices struggle with non-ideal skin conditions, including soft skin in infants. They are also susceptible to presentation attacks, which limits their applicability in unsupervised scenarios such as border control. Optical coherence tomography (OCT) could be a promising solution to these problems. In this work, we propose a digital signal processing chain for segmenting two complementary fingerprints from the same OCT fingertip scan: One fingerprint is captured as usual from the epidermis (“outer fingerprint”), whereas the other is taken from inside the skin, at the junction between the epidermis and the underlying dermis (“inner fingerprint”). The resulting 3D fingerprints are then converted to a conventional 2D grayscale representation from which minutiae points can be extracted using existing methods. Our approach is device-independent and has been proven to work with two different time domain OCT scanners. Using efficient GPGPU computing, it took less than a second to process an entire gigabyte of OCT data. To validate the results, we captured OCT fingerprints of 130 individual fingers and compared them with conventional 2D fingerprints of the same fingers. We found that both the outer and inner OCT fingerprints were backward compatible with conventional 2D fingerprints, with the inner fingerprint generally being less damaged and, therefore, more reliable.
The visual and auditory quality of computer-mediated stimuli for virtual and extended reality (VR/XR) is rapidly improving. Still, it remains challenging to provide a fully embodied sensation and awareness of objects surrounding, approaching, or touching us in a 3D environment, though it can greatly aid task performance in a 3D user interface. For example, feedback can provide warning signals for potential collisions (e.g., bumping into an obstacle while navigating) or pinpointing areas where one’s attention should be directed to (e.g., points of interest or danger). These events inform our motor behaviour and are often associated with perception mechanisms associated with our so-called peripersonal and extrapersonal space models that relate our body to object distance, direction, and contact point/impact. We will discuss these references spaces to explain the role of different cues in our motor action responses that underlie 3D interaction tasks. However, providing proximity and collision cues can be challenging. Various full-body vibration systems have been developed that stimulate body parts other than the hands, but can have limitations in their applicability and feasibility due to their cost and effort to operate, as well as hygienic considerations associated with e.g., Covid-19. Informed by results of a prior study using low-frequencies for collision feedback, in this paper we look at an unobtrusive way to provide spatial, proximal and collision cues. Specifically, we assess the potential of foot sole stimulation to provide cues about object direction and relative distance, as well as collision direction and force of impact. Results indicate that in particular vibration-based stimuli could be useful within the frame of peripersonal and extrapersonal space perception that support 3DUI tasks. Current results favor the feedback combination of continuous vibrotactor cues for proximity, and bass-shaker cues for body collision. Results show that users could rather easily judge the different cues at a reasonably high granularity. This granularity may be sufficient to support common navigation tasks in a 3DUI.
The following work presents algorithms for semi-automatic validation, feature extraction and ranking of time series measurements acquired from MOX gas sensors. Semi-automatic measurement validation is accomplished by extending established curve similarity algorithms with a slope-based signature calculation. Furthermore, a feature-based ranking metric is introduced. It allows for individual prioritization of each feature and can be used to find the best performing sensors regarding multiple research questions. Finally, the functionality of the algorithms, as well as the developed software suite, are demonstrated with an exemplary scenario, illustrating how to find the most power-efficient MOX gas sensor in a data set collected during an extensive screening consisting of 16,320 measurements, all taken with different sensors at various temperatures and analytes.
In her recent article, Bender discusses several aspects of research–practice–collaborations (RPCs). In this commentary, we apply Bender's arguments to experiences in engineering research and development (R&D). We investigate the influence of interaction with practice partners on relevance, credibility, and legitimacy in the special engineering field of product development and analyze which methodological approaches are already being pursued for dealing with diverging interests and asymmetries and which steps will be necessary to include interests of civil society beyond traditional customer relations.
Due to the COVID-19 pandemic, health education programs and workplace health promotion (WHP) could only be offered under difficult conditions, if at all. In Germany for example, mandatory lockdowns, working from home, and physical distancing have led to a sharp decline in expenditure on prevention and health promotion from 2019 to 2020. At the same time, the pandemic has negatively affected many people’s mental health. Therefore, our goal was to examine audiovisual stimulation as a possible measure in the context of WHP, because its usage is contact-free, time flexible, and offers, additionally, voice-guided health education programs. In an online survey following a cross-sectional single case study design with 393 study participants, we examined the associations between audiovisual stimulation and mental health, work engagement, and burnout. Using multiple regression analyses, we could identify positive associations between audiovisual stimulation and mental health, burnout, and work engagement. However, longitudinal data are needed to further investigate causal mechanisms between mental health and the use of audiovisual stimulation. Nevertheless, especially with regard to the pandemic, audiovisual stimulation may represent a promising measure for improving mental health at the workplace.
Im Zuge der Migrationsbewegung in den Jahren 2015 und 2016 hat die menschenwürdige Unterbringung von geflüchteten Menschen in Kommunen in Deutschland an Aufmerksamkeit gewonnen. Der Anstieg der Asylbewerber:innen in den Kommunen sowie die Bundesinitiative „Schutz von geflüchteten Menschen in Flüchtlingsunterkünften“ haben Veränderungen im Hinblick auf Schutzstandards in der kommunalen Unterbringung geflüchteter Menschen hervorgerufen. Der Artikel erklärt diese Veränderungen mittels einer akteurszentrierten organisationssoziologischen Herangehensweise. Grundlage sind empirische Forschungsergebnisse des Projektes „Organisational Perspectives on Human Security Standards for Refugees in Germany“ aus zwei deutschen Kommunen.
Research has identified nudging as a promising and effective tool to improve healthy eating behavior in a cafeteria setting. However, it remains unclear who is and who is not “nudgeable” (susceptible to nudges). An important influencing factor at the individual level is nudge acceptance. While some progress has been made in determining influences on the acceptance of healthy eating nudges, research on how personal characteristics (such as the perception of social norms) affect nudge acceptance remains scarce. We conducted a survey on 1032 university students to assess the acceptance of nine different types of healthy eating nudges in a cafeteria setting with four influential factors (social norms, health-promoting collaboration, responsibility to promote healthy eating, and procrastination). These factors are likely to play a role within a university and a cafeteria setting. The present study showed that key influential factors of nudge acceptance were the perceived responsibility to promote healthy eating and health-promoting collaboration. We also identified three different student clusters with respect to nudge acceptance, demonstrating that not all nudges were accepted equally. In particular, default, salience, and priming nudges were at least moderately accepted regardless of the degree of nudgeability. Our findings provide useful policy implications for nudge development by university, cafeteria, and public health officials. Recommendations are formulated for strengthening the theoretical background of nudge acceptance and the susceptibility to nudges.
The Poverty Reduction Effect of Social Protection: The Pros and Cons of a Multidisciplinary Approach
(2022)
There is a growing body of knowledge on the complex effects of social protection on poverty in Africa. This article explores the pros and cons of a multidisciplinary approach to studying social protection policies. Our research aimed at studying the interaction between cash transfers and social health protection policies in terms of their impact on inclusive growth in Ghana and Kenya. Also, it explored the policy reform context over time to unravel programme dynamics and outcomes. The analysis combined econometric and qualitative impact assessments with national- and local-level political economic analyses. In particular, dynamic effects and improved understanding of processes are well captured by this approach, thus, pushing the understanding of implementation challenges over and beyond a ‘technological fix,’ as has been argued before by Niño-Zarazúa et al. (World Dev 40:163–176, 2012), However, multidisciplinary research puts considerable demands on data and data handling. Finally, some poverty reduction effects play out over a longer time, requiring longitudinal consistent data that is still scarce.