520 Astronomie und zugeordnete Wissenschaften
Refine
Departments, institutes and facilities
Document Type
- Article (37)
- Conference Object (29)
- Preprint (2)
- Doctoral Thesis (1)
Year of publication
Keywords
High-latitude intermediate-velocity clouds (IVCs) are part of the Milky Way’s H I halo and originate from either a galactic fountain process or extragalactic gas infall. They are partly molecular and can most of the time be identified in CO. Some of these regions also exhibit high-velocity cloud gas, which is mostly atomic, and gas at local velocities (LVCs), which is partly atomic and partly molecular. We conducted a study on the IVCs Draco and Spider, both were exposed to a very weak UV field, using the spectroscopic receiver upGREAT on the Stratospheric Observatory for Infrared Astronomy (SOFIA). The 158 µm fine-structure line of ionized carbon ([C II]) was observed, and the results are as follows: In Draco, the [C II] line was detected at intermediate velocities (but not at local or high velocities) in four out of five positions. No [C II] emission was found at any velocity in the two observed positions in Spider. To understand the excitation conditions of the gas in Draco, we analyzed complementary CO and H I data as well as dust column density and temperature maps from Herschel. The observed [C II] intensities suggest the presence of shocks in Draco that heat the gas and subsequently emit in the [C II] cooling line. These shocks are likely caused by the fast cloud’s motion toward the Galactic plane that is accompanied by collisions between H I clouds. The nondetection of [C II] in the Spider IVC and LVC as well as in other low-density clouds at local velocities that we present in this paper (Polaris and Musca) supports the idea that highly dynamic processes are necessary for [C II] excitation in UV-faint low-density regions.
Atomic oxygen is a key species in the mesosphere and thermosphere of Venus. It peaks in the transition region between the two dominant atmospheric circulation patterns, the retrograde super-rotating zonal flow below 70 km and the subsolar to antisolar flow above 120 km altitude. However, past and current detection methods are indirect and based on measurements of other molecules in combination with photochemical models. Here, we show direct detection of atomic oxygen on the dayside as well as on the nightside of Venus by measuring its ground-state transition at 4.74 THz (63.2 µm). The atomic oxygen is concentrated at altitudes around 100 km with a maximum column density on the dayside where it is generated by photolysis of carbon dioxide and carbon monoxide. This method enables detailed investigations of the Venusian atmosphere in the region between the two atmospheric circulation patterns in support of future space missions to Venus.
Multi-epoch searches for relativistic binary pulsars and fast transients in the Galactic Centre
(2021)
Atomic oxygen in the mesosphere and lower thermosphere measured by terahertz heterodyne spectroscopy
(2021)
Atomic oxygen is a main component of the mesosphere and lower thermosphere (MLT). The photochemistry and the energy balance of the MLT are governed by atomic oxygen. In addition, it is a tracer for dynamical motions in the MLT. It is difficult to measure with remote sensing techniques. Concentrations can be inferred indirectly from the oxygen air glow or from observations of OH, which is involved in photochemical processes related to atomic oxygen. Such measurements have been performed with several satellite instruments such as SCIAMACHY, SABER, WINDII and OSIRIS. However, the methods are indirect and rely on photochemical models and assumptions such as quenching rates, radiative lifetimes, and reaction coefficients. The results are not always in agreement, particularly when obtained with different instruments.
4GREAT is an extension of the German Receiver for Astronomy at Terahertz frequencies (GREAT) operated aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA). The spectrometer comprises four different detector bands and their associated subsystems for simultaneous and fully independent science operation. All detector beams are co-aligned on the sky. The frequency bands of 4GREAT cover 491-635, 890-1090, 1240-1525 and 2490-2590 GHz, respectively. This paper presents the design and characterization of the instrument, and its in-flight performance. 4GREAT saw first light in June 2018, and has been offered to the interested SOFIA communities starting with observing cycle 6.
In recent years, a plethora of observations with high spectral resolution of sub-millimetre and far-infrared transitions of methylidene (CH), conducted with Herschel and SOFIA, have demonstrated this radical to be a valuable proxy for molecular hydrogen that can be used for characterising molecular gas within the interstellar medium on a Galactic scale, including the CO-dark component. We report the discovery of the 13CH isotopologue in the interstellar medium using the upGREAT receiver on board SOFIA. We have detected the three hyperfine structure components of the ≈2 THz frequency transition from its X2Π1∕2 ground-state towards the high-mass star-forming regions Sgr B2(M), G34.26+0.15, W49(N), and W51E and determined 13CH column densities. The ubiquity of molecules containing carbon in the interstellar medium has turned the determination of the ratio between the abundances of the two stable isotopes of carbon, 12C/13C, into a cornerstone for Galactic chemical evolution studies. Whilst displaying a rising gradient with galactocentric distance, this ratio, when measured using observations of different molecules (CO, H2CO, and others), shows systematic variations depending on the tracer used. These observed inconsistencies may arise from optical depth effects, chemical fractionation, or isotope-selective photo-dissociation. Formed from C+ either through UV-driven or turbulence-driven chemistry, CH reflects the fractionation of C+, and does not show any significant fractionation effects, unlike other molecules that were previously used to determine the 12C/13C isotopic ratio. This makes it an ideal tracer for the 12C/13C ratio throughout the Galaxy. By comparing the derived column densities of 13CH with previously obtained SOFIA data of the corresponding transitions of the main isotopologue 12CH, we therefore derive 12C/13C isotopic ratios toward Sgr B2(M), G34.26+0.15, W49(N) and W51E. Adding our values derived from 12∕13CH to previous calculations of the Galactic isotopic gradient, we derive a revised value of 12C/13C = 5.87(0.45)RGC + 13.25(2.94).
During the dawn of chemistry when the temperature of the young Universe had fallen below ∼4000 K, the ions of the light elements produced in Big Bang nucleosynthesis recombined in reverse order of their ionization potential. With its higher ionization potentials, He++ (54.5 eV) and He+ (24.6 eV) combined first with free electrons to form the first neutral atom, prior to the recombination of hydrogen (13.6 eV). At that time, in this metal-free and low-density environment, neutral helium atoms formed the Universe's first molecular bond in the helium hydride ion HeH+, by radiative association with protons (He + H+ → HeH+ + hν). As recombination progressed, the destruction of HeH+ (HeH+ + H → He + H+2) created a first path to the formation of molecular hydrogen, marking the beginning of the Molecular Age. Despite its unquestioned importance for the evolution of the early Universe, the HeH+ molecule has so far escaped unequivocal detection in interstellar space. In the laboratory, the ion was discovered as long ago as 1925, but only in the late seventies was the possibility that HeH+ might exist in local astrophysical plasmas discussed. In particular, the conditions in planetary nebulae were shown to be suitable for the production of potentially detectable HeH+ column densities: the hard radiation field from the central hot white dwarf creates overlapping Strömgren spheres, where HeH+ is predicted to form, primarily by radiative association of He+ and H. With the GREAT spectrometer onboard SOFIA, the HeH+ rotational ground-state transition at λ149.1 μm is now accessible. We report here its detection towards the planetary nebula NGC7027.
We present the performance of the upGREAT heterodyne array receivers on the SOFIA telescope after several years of operations. This instrument is a multi-pixel high resolution (R≳107) spectrometer for the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA). The receivers use 7-pixel subarrays configured in a hexagonal layout around a central pixel. The low frequency array receiver (LFA) has 2×7 pixels (dual polarization), and presently covers the 1.83–2.07THz frequency range, which allows to observe the [CII] and [OI] lines at 158μm and 145μm wavelengths. The high frequency array (HFA) covers the [OI] line at 63μm and is equipped with one polarization at the moment (7 pixels, which can be upgraded in the near future with a second polarization array). The 4.7THz array has successfully flown using two separate quantum-cascade laser local oscillators from two different groups. NASA completed the development, integration and testing of a dual-channel closed-cycle cryocooler system, with two independently operable He compressors, aboard SOFIA in early 2017 and since then, both arrays can be operated in parallel using a frequency separating dichroic mirror. This configuration is now the prime GREAT configuration and has been added to SOFIA’s instrument suite since observing cycle 6.
We present a new multi-pixel high resolution (R ≳ 107) spectrometer for the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA). The receiver uses 2 × 7-pixel subarrays in orthogonal polarization, each in an hexagonal array around a central pixel. We present the first results for this new instrument after commissioning campaigns in May and December 2015 and after science observations performed in May 2016. The receiver is designed to ultimately cover the full 1.8−2.5 THz frequency range but in its first implementation, the observing range was limited to observations of the [CII] line at 1.9 THz in 2015 and extended to 1.83−2.07 THz in 2016. The instrument sensitivities are state-of-the-art and the first scientific observations performed shortly after the commissioning confirm that the time efficiency for large scale imaging is improved by more than an order of magnitude as compared to single pixel receivers. An example of large scale mapping around the Horsehead Nebula is presented here illustrating this improvement. The array has been added to SOFIA’s instrument suite already for ongoing observing cycle 4.
Superconducting heterodyne receiver has played a vital role in the high resolution spectroscopy applications for astronomy and atmospheric research up to 2THz. NbN hot electron bolometer (HEB) mixer, as the most sensitive mixer above 1.5THz, has been used in the Herschel space telescope for 1.4-1.9THz and has also shown an ultra-high sensitivity up to 5.3THz. Combined a HEB mixer with a novel THz quantum cascade laser (QCL) as local oscillator (LO), such an all solid-state heterodyne receiver provides the technology which can be used for any balloon-, air- and space-borne heterodyne instruments above 2THz. Here we report the first high-resolution heterodyne spectroscopy measurement using a gas cell and using such a HEB-QCL receiver. The receiver employs a 2.9THz metal-metal waveguide QCL as LO and a NbN HEB as a mixer. By using a gas cell filled with methanol (CH3OH) gas in combination with hot/cold blackbody loads as signal source, we successfully recorded the methanol emission line around 2.918THz. Spectral lines at different pressures and also different frequency of the QCL are studied.
Based on our reconfigurable FPGA spectrometer technology, we have developed a read-out system, operating in the frequency domain, for arrays of Microwave Kinetic Inductance Detectors (MKIDs). The readout consists of a combination of two digital boards: A programmable DAC-/FPGA-board (tone-generator) to stimulate the MKIDs detectors and an ADC-/FPGA-unit to analyze the detectors response. Laboratory measurement show no deterioration of the noise performance compared to low noise analog mixing. Thus, this technique allows capturing several hundreds of detector signals with just one pair of coaxial cables.
Heterodyne gas cell measurements at 2.9 THz using a quantum cascade laser as local oscillator
(2010)
Spectral surveys provide the only way to determine the full molecular inventory of an object and hence build a comprehensive view of the state of the molecular gas and its role in star formation and the structure and evolution of the ISM. Of course spectral surveys also provide the most efficient method of identifying new and unexpected species that have to be include in the chemical networks. The most extensive and complete survey of an extragalactic system has been the continuous spectral survey from 129 GHz to 175 GHz carried out by Martín et al. (2006) toward NGC253. This first spectral line surveys at 2 mm towards the prototypical starbursts galaxies NGC253 have shown an unexpected chemical richness.
Simultaneous multifrequency radio observations of the Galactic Centre magnetar SGR J1745-2900
(2015)
Radio pulsars in relativistic binary systems are unique tools to study the curved space-time around massive compact objects. The discovery of a pulsar closely orbiting the super-massive black hole at the centre of our Galaxy, Sgr A⋆, would provide a superb test-bed for gravitational physics. To date, the absence of any radio pulsar discoveries within a few arc minutes of Sgr A⋆ has been explained by one principal factor: extreme scattering of radio waves caused by inhomogeneities in the ionized component of the interstellar medium in the central 100 pc around Sgr A⋆. Scattering, which causes temporal broadening of pulses, can only be mitigated by observing at higher frequencies. Here we describe recent searches of the Galactic centre region performed at a frequency of 18.95 GHz with the Effelsberg radio telescope.
The Anomalous X‐ray Pulsar 4U 0142+61 is the only neutron star where it is believed that one of the long searched‐for ‘fallback’ disks has been detected in the mid‐IR by Wang et al. [1] using Spitzer. Such a disk originates from material falling back to the NS after the supernova. We search for cold circumstellar material in the 90 GHz continuum using the Plateau de Bure Interferometer. No millimeter flux is detected at the position of 4U 0142+61, the upper flux limit is 150 μJy corresponding to the 3σ noise rms level. The re‐processed Spitzer MIPS 24μm data presented previously by Wang et al. [2] show some indication of flux enhancement at the position of the neutron star, albeit below the 3σ statistical significance limit. At far infrared wavelengths the source flux densities are probably below the Herschel confusion limits.
Microwave Kinetic Inductance Detectors have great potential for large very sensitive detector arrays for use in, for example, ground and spaced based sub?mm imaging. Being intrinsically readout in the frequency domain, they are particularly suited for frequency domain multiplexing allowing 1000s of devices to be readout with one pair of coaxial cables. However, this moves the complexity of the detector from the cryogenics to the warm electronics. We present the use of a readout based on a Fast Fourier transform Spectrometer, showing no deterioration of the noise performance compared to low noise analog mixing while allowing high multiplexing ratios (>100). We present use of this technique to multiplex 44 MKIDs, while this and similar setups are regularly now being used in our array development. This development will help the realization of large cameras, particularly in the short term for ground based astronomy.
We report on submillimetre bolometer observations of the isolated neutron star RX J1856.5−3754 using the Large Apex Bolometer Camera bolometer array on the Atacama Pathfinder Experiment telescope. No cold dust continuum emission peak at the position of RX J1856.5−3754 was detected. The 3σ flux density upper limit of 5 mJy translates into a cold dust mass limit of a few earth masses. We use the new submillimetre limit, together with a previously obtained H-band limit, to constrain the presence of a gaseous, circumpulsar disc. Adopting a simple irradiated disc model, we obtain a mass accretion limit of Graphic and a maximum outer disc radius of ∼1014 cm. By examining the projected proper motion of RX J1856.5−3754, we speculate about a possible encounter of the neutron star with a dense fragment of the CrA molecular cloud a few thousand years ago.
Millimetron is a Russian-led 12 m diameter submillimeter and far-infrared space observatory which is included in the Space Plan of the Russian Federation for launch around 2017. With its large collecting area and state-of-the-art receivers, it will enable unique science and allow at least one order of magnitude improvement with respect to the Herschel Space Observatory. Millimetron will be operated in two basic observing modes: as a single-dish observatory, and as an element of a ground-space very long baseline interferometry (VLBI) system. As single-dish, angular resolutions on the order of 3 to 12 arc sec will be achieved and spectral resolutions of up to a million employing heterodyne techniques. As VLBI antenna, the chosen elliptical orbit will provide extremely large VLBI baselines (beyond 300,000 km) resulting in micro-arc second angular resolution.
We review the development of our digital broadband Fast Fourier Transform Spectrometers (FFTS). In just a few years, FFTS back-ends - optimized for a wide range of radio astronomical applications - have become a new standard for heterodyne receivers, particularly in the mm and sub-mm wavelength range. They offer high instantaneous bandwidths with many thousands spectral channels on a small electronic board (100 x 160 mm). Our FFT spectrometer make use of the latest versions of GHz analog-to-digital converters (ADC) and the most complex field programmable gate array (FPGA) chips commercially available today. These state-of-the-art chips have made possible to build digital spectrometers with instantaneous bandwidths up to 1.8 GHz and 8192 spectral channels.
GREAT, the German REceiver for Astronomy at THz frequencies, has successfully passed its pre-shipment acceptance review conducted by DLR and NASA on December 4-5, 2008. Shipment to DAOF/Palmdale, home of the SOFIA observatory, has been released; airworthiness was stated by NASA. Since, due to schedule slips on the SOFIA project level, first science flights with GREAT were delayed to mid 2010. Here we present GREAT’s short science flight configuration: two heterodyne channels will be operated simultaneously in the frequency ranges of 1.25-1.50 and 1.82-1.91 THz, respectively, driven by solid-state type local oscillator systems, and supported by a wide suite of back-ends. The receiver was extensively tested for about 6 month in the MPIfR labs, showing performances compliant with specifications. This short science configuration will be available to the interested SOFIA user communities in collaboration with the GREAT PI team during SOFIA’s upcoming Basic Science flights.
Kinetic Inductance Detectors with Integrated Antennas for Ground and Space-Based Sub-mm Astronomy
(2009)
Very large arrays of Microwave Kinetic Inductance Detectors (MKIDs) have the potential to revolutionize ground and space based astronomy. They can offer in excess of 10.000 pixels with large dynamic range and very high sensitivity in combination with very efficient frequency division multiplexing at GHz frequencies. In this paper we present the development of a 400 pixel MKID demonstration array, including optical coupling, sensitivity measurements, beam pattern measurements and readout. The design presented can be scaled to any frequency between 80 GHz and >5 THz because there is no need for superconducting structures that become lossy at frequencies above the gap frequency of the materials used. The latter would limit the frequency coverage to below 1 THz for relatively high gap materials such as NbTiN. An individual pixels of the array consist of a distributed Aluminium CPW MKID with an integrated twin slot antenna at its end. The antenna is placed in the in the second focus of an elliptical high purity Si lens. The lens-antenna coupling design allows room for the MKID resonator outside of the focal point of the lens. The best dark noise equivalent power of these devices is measured to be NEP = 7×10-19 W/[square root]Hz and the optical coupling efficiency is around 30%, in which no antireflection coating was used on the Si lens. For the readout we use a commercial arbitrary waveform generator and a 1.5 GHz FFTS. We show that using this concept it is possible to read out in excess of 400 pixels with 1 board and 1 pair of coaxial cables.
Known and novel techniques are described to implement a Fast Fourier Transform (FFT) in hardware, such that parallelized data can be processed. The usage of both - real and imaginary FFT-input - can help saving hardware. Based on the different techniques, flexible to use FFT-implementations have been developed by combining standard FFT-components (partly IP) and are compared, according to their hardware utilization. Finally, applicability has been demonstrated in practice by a FFTimplementation with 8192 channels as part of a FPGAspectrometer with a total bandwidth of 1.5 GHz.
We present our second generation of broadband Fast Fourier Transform Spectrometer (FFTS), optimized for a wide range of radio astronomical applications. The new digitizer and analyzer boards make use of the latest versions of GHz analogto-digital converters and the most complex field programmable gate array chips commercially available today. These state-ofthe-art chips have made possible to build digital spectrometers with instantaneous bandwidths up to 1.8 GHz and 8192 spectral channels.
Using the Atacama Pathfinder Experiment (APEX) telescope, we have detected the rotational ground-state transitions of ortho-ammonia and ortho-water toward the redshift 0.89 absorbing galaxy in the PKS 1830-211 gravitational lens system. We discuss our observations in the context of recent space-borne data obtained for these lines with the SWAS and Odin satellites toward Galactic sources. We find commonalities, but also significant differences between the interstellar media in a galaxy at intermediate redshift and in the Milky Way. Future high-quality observations of the ground-state ammonia transition in PKS 1830-211, together with inversion line data, will lead to strong constraints on the variation in the proton to electron mass ratio over the past 7.2 Gyr.
To make best use of the exceptional good weather conditions at Chajnantor we developed CHAMP+, a two time seven pixel dual-color heterodyne array for operation in the 350 and 450 µm atmospheric windows. CHAMP+ uses state-of-the-art SIS-mixers provided by our collaborators at SRON. To maximize its performance, optical single sideband filter are implemented for each of the two subarrays, and most of the optics is operated cold (20K) to minimize noise contributions. The instrument can be operated remotely, under full computer control of all components. The autocorrelator backend, currently in operation with 2 × 1GHz of bandwidth for each of the 14 heterodyne channels, will be upgraded by a new technologies FFT spectrometer array in mid 2008. CHAMP+ has been commissioned successfully in late 2007. We will review the performance of the instrument "in the field," and present its characteristics as measured on-sky.
Context.We present the technology and first scientific results of a new generation of very flexible and sensitive spectrometers, well-suited for the needs of spectral-line radio and (sub)millimeter astronomy: Fast Fourier Transform Spectrometers (FFTS), which are in operation at the Atacama Pathfinder EXperiment (APEX) telescope.
Aims. The FFTS for APEX is a novel high-resolution 2 x 1 GHz bandwidth digital spectrometer backend. Due to its high frequency resolution, and the demonstrated capability of operating at high altitude, the FFTS became the facility spectrometer for spectral line observations at APEX.
Methods. The FFTS is based on one of the currently most powerful digitizer/analyzer boards available from Acqiris, Switzerland. The board incorporates two 1 Gsamples/s analog-to-digital converters (ADCs) with 8-bit resolution which feed an on-board complex field programmable gate array (FPGA) chip. The enormous processing power by today's FPGAs allow for a complete real-time FFT signal processing pipeline to decompose a 1 GHz band into 16 384 spectral channels in just one chip.
Results. Since May 2005 an MPIfR FFTS has been extensively used in all regular spectroscopic science observations. The performance at APEX was demonstrated to be very reliable and as good as measured in the first laboratory tests which finally led to the request to provide a second, facility type FFTS for APEX. The unit was delivered and commissioned in March this year.
Conclusions. Using a commercially available digitizer board, it was possible to develop a complete FFTS in only a few months. Successful observations at APEX demonstrate that this new generation of FPGA-based spectrometers easily matching and superseding the performance of older technology spectrometers and can built up much more easily. Furthermore, the by now available class of new high-speed ADCs and the continuous increase of FPGA processing power makes it very likely that FFTS can be pushed to broader bandwidth and even more spectral channels in the near future.