## 530 Physik

### Refine

#### Departments, institutes and facilities

- Fachbereich Angewandte Naturwissenschaften (11)
- Institut für Technik, Ressourcenschonung und Energieeffizienz (TREE) (11)
- Fachbereich Ingenieurwissenschaften und Kommunikation (10)
- Fachbereich Informatik (1)
- Institut für Detektionstechnologien (IDT) (1)
- Institut für Sicherheitsforschung (ISF) (1)
- Institut für funktionale Gen-Analytik (IFGA) (1)
- Institute of Visual Computing (IVC) (1)

#### Document Type

- Article (43)
- Part of a Book (3)
- Preprint (3)
- Conference Object (2)

#### Year of publication

#### Keywords

- Molecular dynamics (3)
- Monte Carlo (2)
- Adaptive resolution schemes (1)
- Alkane (1)
- Atomistic force fields (1)
- Beta strands (1)
- COVID-19 (1)
- Compressible flows (1)
- Convolutional Neural Network (CNN) (1)
- Extensible (1)

Pipeline transport is an efficient method for transporting fluids in energy supply and other technical applications. While natural gas is the classical example, the transport of hydrogen is becoming more and more important; both are transmitted under high pressure in a gaseous state. Also relevant is the transport of carbon dioxide, captured in the places of formation, transferred under high pressure in a liquid or supercritical state and pumped into underground reservoirs for storage. The transport of other fluids is also required in technical applications. Meanwhile, the transport equations for different fluids are essentially the same, and the simulation can be performed using the same methods. In this paper, the effect of control elements such as compressors, regulators and flaptraps on the stability of fluid transport simulations is studied. It is shown that modeling of these elements can lead to instabilities, both in stationary and dynamic simulations. Special regularization methods were developed to overcome these problems. Their functionality also for dynamic simulations is demonstrated for a number of numerical experiments.

There are several recent works which had proposed an automatic computer-aided diagnosis (CAD) deep learning (DL) model to diagnose coronavirus disease 2019 (COVID-19) using chest x-ray images (CXR) to propose a high-accuracy CAD method to detect COVID-19 automatically. In this study, seven different models including Convolutional Neural Network (CNN) models such as VGG-16 and vision transformer (ViT) models, are proposed. The different proposed models are trained with a three-class balanced dataset consisting of 3,000 CXR images consisting of 1,000 CXR images for each class of COVID-19, Normal, and Lung-Opacity. A publicly available dataset to train and test the models is used from Kaggle-COVID-19-Radiography-Dataset. From the experiments, the accuracy of the VGG16 model is 93.44% and ViT's is 92.33%. Besides, the binary classification between two classes of COVID-19 and Normal CXR with a limited number of just 100 images for each class, using a transfer learning technique, with a validation accuracy of 97.5% is proposed.

Hydrogen‐Bonded Cholesteric Liquid Crystals—A Modular Approach Toward Responsive Photonic Materials
(2022)

A supramolecular approach for photonic materials based on hydrogen-bonded cholesteric liquid crystals is presented. The modular toolbox of low-molecular-weight hydrogen-bond donors and acceptors provides a simple route toward liquid crystalline materials with tailor-made thermal and photonic properties. Initial studies reveal broad application potential of the liquid crystalline thin films for chemo- and thermosensing. The chemosensing performance is based on the interruption of the intermolecular forces between the donor and acceptor moieties by interference with halogen-bond donors. Future studies will expand the scope of analytes and sensing in aqueous media. In addition, the implementation of the reported materials in additive manufacturing and printed photonic devices is planned.

Turbulent compressible flows are traditionally simulated using explicit time integrators applied to discretized versions of the Navier-Stokes equations. However, the associated Courant-Friedrichs-Lewy condition severely restricts the maximum time-step size. Exploiting the Lagrangian nature of the Boltzmann equation’s material derivative, we now introduce a feasible three-dimensional semi-Lagrangian lattice Boltzmann method (SLLBM), which circumvents this restriction. While many lattice Boltzmann methods for compressible flows were restricted to two dimensions due to the enormous number of discrete velocities in three dimensions, the SLLBM uses only 45 discrete velocities. Based on compressible Taylor-Green vortex simulations we show that the new method accurately captures shocks or shocklets as well as turbulence in 3D without utilizing additional filtering or stabilizing techniques other than the filtering introduced by the interpolation, even when the time-step sizes are up to two orders of magnitude larger compared to simulations in the literature. Our new method therefore enables researchers to study compressible turbulent flows by a fully explicit scheme, whose range of admissible time-step sizes is dictated by physics rather than spatial discretization.

The identification of energetic materials in containments is an important challenge for analytical methods in the field of safety and security. Opening a package without knowledge of its contents and the resulting hazards is highly involved with risks and should be avoided whenever possible. Therefore, preferable methods work non-destructive with minimal interaction and are capable of identifying target substances in a containment quickly and reliably. Most spectroscopic methods find their limits, if the target substance is shielded by a covering material. To solve this problem, a combined laser drilling method with subsequent identification of the target substance by means of Raman spectroscopic measurements through microscopic bore holes of the covering material is presented. A pulsed laser beam is used for both the drilling process and as an excitation source for Raman measurements in the same optical setup. Results show the ability of this new method to gain high-quality spectra even when performed through microscopic small bore channels. With the laser parameters chosen right, the method can even be performed on highly sensitive explosives like triacetone triperoxide (TATP). Another advantageous effect arises in an observed reduction in unwanted fluorescence signal in the spectral data, resulting from the confocal-like measurement setup with the bore hole acting as aperture.

Off-lattice Boltzmann methods increase the flexibility and applicability of lattice Boltzmann methods by decoupling the discretizations of time, space, and particle velocities. However, the velocity sets that are mostly used in off-lattice Boltzmann simulations were originally tailored to on-lattice Boltzmann methods. In this contribution, we show how the accuracy and efficiency of weakly and fully compressible semi-Lagrangian off-lattice Boltzmann simulations is increased by velocity sets derived from cubature rules, i.e. multivariate quadratures, which have not been produced by the Gauss-product rule. In particular, simulations of 2D shock-vortex interactions indicate that the cubature-derived degree-nine D2Q19 velocity set is capable to replace the Gauss-product rule-derived D2Q25. Likewise, the degree-five velocity sets D3Q13 and D3Q21, as well as a degree-seven D3V27 velocity set were successfully tested for 3D Taylor-Green vortex flows to challenge and surpass the quality of the customary D3Q27 velocity set. In compressible 3D Taylor-Green vortex flows with Mach numbers Ma={0.5;1.0;1.5;2.0} on-lattice simulations with velocity sets D3Q103 and D3V107 showed only limited stability, while the off-lattice degree-nine D3Q45 velocity set accurately reproduced the kinetic energy provided by literature.

Turbulent compressible flows are traditionally simulated using explicit Eulerian time integration applied to the Navier-Stokes equations. However, the associated Courant-Friedrichs-Lewy condition severely restricts the maximum time step size. Exploiting the Lagrangian nature of the Boltzmann equation's material derivative, we now introduce a feasible three-dimensional semi-Lagrangian lattice Boltzmann method (SLLBM), which elegantly circumvents this restriction. Previous lattice Boltzmann methods for compressible flows were mostly restricted to two dimensions due to the enormous number of discrete velocities needed in three dimensions. In contrast, this Rapid Communication demonstrates how cubature rules enhance the SLLBM to yield a three-dimensional velocity set with only 45 discrete velocities. Based on simulations of a compressible Taylor-Green vortex we show that the new method accurately captures shocks or shocklets as well as turbulence in 3D without utilizing additional filtering or stabilizing techniques, even when the time step sizes are up to two orders of magnitude larger compared to simulations in the literature. Our new method therefore enables researchers for the first time to study compressible turbulent flows by a fully explicit scheme, whose range of admissible time step sizes is only dictated by physics, while being decoupled from the spatial discretization.

This work thoroughly investigates a semi-Lagrangian lattice Boltzmann (SLLBM) solver for compressible flows. In contrast to other LBM for compressible flows, the vertices are organized in cells, and interpolation polynomials up to fourth order are used to attain the off-vertex distribution function values. Differing from the recently introduced Particles on Demand (PoD) method , the method operates in a static, non-moving reference frame. Yet the SLLBM in the present formulation grants supersonic flows and exhibits a high degree of Galilean invariance. The SLLBM solver allows for an independent time step size due to the integration along characteristics and for the use of unusual velocity sets, like the D2Q25, which is constructed by the roots of the fifth-order Hermite polynomial. The properties of the present model are shown in diverse example simulations of a two-dimensional Taylor-Green vortex, a Sod shock tube, a two-dimensional Riemann problem and a shock-vortex interaction. It is shown that the cell-based interpolation and the use of Gauss-Lobatto-Chebyshev support points allow for spatially high-order solutions and minimize the mass loss caused by the interpolation. Transformed grids in the shock-vortex interaction show the general applicability to non-uniform grids.

This work introduces a semi-Lagrangian lattice Boltzmann (SLLBM) solver for compressible flows (with or without discontinuities). It makes use of a cell-wise representation of the simulation domain and utilizes interpolation polynomials up to fourth order to conduct the streaming step. The SLLBM solver allows for an independent time step size due to the absence of a time integrator and for the use of unusual velocity sets, like a D2Q25, which is constructed by the roots of the fifth-order Hermite polynomial. The properties of the proposed model are shown in diverse example simulations of a Sod shock tube, a two-dimensional Riemann problem and a shock-vortex interaction. It is shown that the cell-based interpolation and the use of Gauss-Lobatto-Chebyshev support points allow for spatially high-order solutions and minimize the mass loss caused by the interpolation. Transformed grids in the shock-vortex interaction show the general applicability to non-uniform grids.

We investigated graphene structures grafted with fullerenes. The size of the graphene sheets ranges from 6400 to 640,000 atoms. The fullerenes (C60 and C240) are placed on top of the graphene sheets, using different impact velocities we could distinguish three types of impact. Furthermore, we investigated the changes of the vibrational properties. The modified graphene planes show additional features in the vibronic density of states.

Low-frequency vibrational excitations in zeolite ZSM-5 and its partially crystalline derivatives
(2004)

Molecular dynamics investigation of vibrational properties of zeolite ZSM-5-based amorphous material
(2003)

GROW: A gradient-based optimization workflow for the automated development of molecular models
(2010)

Comparison Between Coarse-Graining Models for Polymer Systems: Two Mapping Schemes for Polystyrene
(2007)

Structural and Dynamical Properties of Polystyrene Determined by Coarse-Graining MD Simulations
(2007)

We present results from a detailed study of a new, optimized coarse-grained (CG) model of polystyrene (PS) and compare it with a recently published one (Harmandaris et al., Macromolecules 2006, 39, 6708). We will explain in detail, what led us to a different mapping scheme and put that into the general framework, with special emphasis on the aspect of time mapping. The new model is tested against the structural and dynamic properties of PS, resulting from atomistic simulations.

The influence of interaction details on the thermal diffusion in binary Lennard-Jones liquids
(2001)