531 Klassische Mechanik; Festkörpermechanik
Refine
H-BRS Bibliography
- yes (4)
Departments, institutes and facilities
Document Type
- Article (1)
- Dataset (1)
- Doctoral Thesis (1)
- Preprint (1)
Language
- English (4)
Keywords
Traditional and newly developed testing methods were used for extensive application-related characterization of transdermal therapeutic systems (TTS) and pressure sensitive adhesives (PSA). Large amplitude oscillatory shear tests of PSAs were correlated to the material behavior during the patient’s motion and showed that all PSAs were located close to the gel point. Furthermore, an increasing strain amplitude results in stretching and yielding of the PSA´s microstructure causing a consolidation of the network and a release with increasing strain amplitude. RheoTack approach was developed to allow for an advanced tack characterization of TTS with visual inspection. The results showed a clear resin content and rod geometry dependent behavior, and displays the PSA´s viscoelasticity resulting in either high tack and long stretched fibrils or non-adhesion and brittle behavior. Moreover, diffusion of water / sweat during TTS´s application might influence its performance. Therefore, a dielectric analysis based evaluation method displayed occurring water diffusion into the PSA from which the diffusion coefficient can be determined, and showed clear material and resin content dependent behavior. All methods allow for an advanced product-oriented material testing that can be utilized within further TTS development.
Transdermal therapeutic systems (TTS) represent an up-to-day medication applied to human skin, which consists of a drug-containing pressure-sensitive adhesive (PSA) and a flexible backing layer. The development of a reliable TTS requires precise knowledge of the viscoelastic tack behavior of PSA in terms of adhesion and detaching. Tailoring of a PSA can be achieved by altering the resin content or modifying the chemical properties of the macromolecules. In this study, three different resin content of two silicone-based PSA – non-amine compatible, and less tack, amine-compatible – were investigated with the help of recently developed RheoTack method to characterize the retraction speed dependent tack behavior for various geometries of the testing rods. The obtained force-retraction displacement-curves clearly depict the effect of the chemical structure as well as the resin content. Decreasing the resin content shifts the start of fibril fracture to larger deformations states and significantly enhances the stretchability of the fibrils. To compare various rod geometries precisely, the force-retraction displacement curves were normalized to account for effective contact areas. The flat and spherical rods led to completely different failure and tack behaviors. Furthermore, the adhesion formation between TTS with flexible backing layers and rods during the dwell phase happens in a different manner compared to rigid plates, in particular for flat rods, where maximum compression stresses occur at the edges and not uniformly over the cross-section. Thus, the approach to follow ASTM D2949 has to be reconsidered for tests of these materials.
Characterization methods of pressure sensitive adhesives (PSA) originate from technical bonding and do not cover relevant data for the development and quality assurance of medical applications, where PSA with flexible backing layers are adopted to human skin. In this study, a new method called RheoTack is developed to determine (mechanically and optically) an adhesion and detaching behavior of flexible and transparent PSA based patches. Transdermal therapeutic systems (TTS) consisting of silicone-based PSAs on a flexible and transparent backing layer were tested on a rotational rheometer with an 8 mm plate as a probe rod at retraction speeds of 0.01, 0.1, and 1 mm/s with respect to their adhesion and detaching behavior in terms of force-retraction displacement curves. The curves consist of a compression phase to affirm wetting; a tensile deformation phase intercepting stretching, cavity, and fibril formation; and a failure phase with detaching. Their analysis provides values for stiffness, force, and displacement of the beginning of fibril formation, force and displacement of the beginning of a failure due to fibril breakage and detaching, as well as corresponding activation energies. All these parameters exhibit the pronounced dependency on the retraction speed. The force-retraction displacement curves together with the simultaneous video recordings of the TTS deformation from three different angles (three cameras) provide deeper insight into the deformation processes and allow for interpreting the properties’ characteristics for PSA applications.