616 Krankheiten
Refine
H-BRS Bibliography
- yes (10)
Departments, institutes and facilities
Document Type
- Article (10)
Language
- English (10)
Keywords
- Inborn error of metabolism (2)
- Ketone body (2)
- Metabolic acidosis (2)
- Organic aciduria (2)
- ACAT1 (1)
- AML (1)
- Adipogenic effect (1)
- Beta-ketothiolase (1)
- Breast cancer (1)
- CDKN1B (1)
Background: Staurosporine-dependent single and collective cell migration patterns of breast carcinoma cells MDA-MB-231, MCF-7, and SK-BR-3 were analysed to characterise the presence of drug-dependent migration promoting and inhibiting yin-yang effects. Methods: Migration patterns of various breast cancer cells after staurosporine treatment were investigated using Western blot, cell toxicity assays, single and collective cell migration assays, and video time-lapse. Statistical analyses were performed with Kruskal–Wallis and Fligner–Killeen tests. Results: Application of staurosporine induced the migration of single MCF-7 cells but inhibited collective cell migration. With the exception of low-density SK-BR-3 cells, staurosporine induced the generation of immobile flattened giant cells. Video time-lapse analysis revealed that within the borderline of cell collectives, staurosporine reduced the velocity of individual MDA-MB-231 and SK-BR-3, but not of MCF-7 cells. In individual MCF-7 cells, mainly the directionality of migration became disturbed, which led to an increased migration rate parallel to the borderline, and hereby to an inhibition of the migration of the cell collective as a total. Moreover, the application of staurosporine led to a transient activation of ERK1/2 in all cell lines. Conclusion: Dependent on the context (single versus collective cells), a drug may induce opposite effects in the same cell line.
Mebendazole Mediates Proteasomal Degradation of GLI Transcription Factors in Acute Myeloid Leukemia
(2021)
The prognosis of elderly AML patients is still poor due to chemotherapy resistance. The Hedgehog (HH) pathway is important for leukemic transformation because of aberrant activation of GLI transcription factors. MBZ is a well-tolerated anthelmintic that exhibits strong antitumor effects. Herein, we show that MBZ induced strong, dose-dependent anti-leukemic effects on AML cells, including the sensitization of AML cells to chemotherapy with cytarabine. MBZ strongly reduced intracellular protein levels of GLI1/GLI2 transcription factors. Consequently, MBZ reduced the GLI promoter activity as observed in luciferase-based reporter assays in AML cell lines. Further analysis revealed that MBZ mediates its anti-leukemic effects by promoting the proteasomal degradation of GLI transcription factors via inhibition of HSP70/90 chaperone activity. Extensive molecular dynamics simulations were performed on the MBZ-HSP90 complex, showing a stable binding interaction at the ATP binding site. Importantly, two patients with refractory AML were treated with MBZ in an off-label setting and MBZ effectively reduced the GLI signaling activity in a modified plasma inhibitory assay, resulting in a decrease in peripheral blood blast counts in one patient. Our data prove that MBZ is an effective GLI inhibitor that should be evaluated in combination to conventional chemotherapy in the clinical setting.
Cysticfibrosis (CF) arises from mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in progressiveand life-limiting respiratory disease. R751L is a rare CFTR mutation that is poorly characterized. Our aims were to describe theclinical and molecular phenotypes associated with R751L. Relevant clinical data were collected from three heterozygote individu-als harboring R751L (2 patients with G551D/R751L and 1 with F508del/R751L). Assessment of R751L-CFTR function was made inprimary human bronchial epithelial cultures (HBEs) andXenopusoocytes. Molecular properties of R751L-CFTR were investigatedin the presence of known CFTR modulators. Although sweat chloride was elevated in all three patients, the clinical phenotypeassociated with R751L was mild. Chloride secretion in F508del/R751L HBEs was reduced compared with non-CF HBEs and asso-ciated with a reduction in sodium absorption by the epithelial sodium channel (ENaC). However, R751L-CFTR function inXenopusoocytes, together with folding and cell surface transport of R751L-CFTR, was not different from wild-type CFTR. Overall,R751L-CFTR was associated with reduced sodium chloride absorption but had functional properties similar to wild-type CFTR.This is thefirst report of R751L-CFTR that combines clinical phenotype with characterization of functional and biological proper-ties of the mutant channel. Our work will build upon existing knowledge of mutations within this region of CFTR and, importantly,inform approaches for clinical management. Elevated sweat chloride and reduced chloride secretion in HBEs may be due to al-ternative non-CFTR factors, which require further investigation.
Background: Human mesenchymal stem cells (hMSCs) have shown their multipotential including differentiating towards endothelial and smooth muscle cell lineages, which triggers a new interest for using hMSCs as a putative source for cardiovascular regenerative medicine. Our recent publication has shown for the first time that purinergic 2 receptors are key players during hMSC differentiation towards adipocytes and osteoblasts. Purinergic 2 receptors play an important role in cardiovascular function when they bind to extracellular nucleotides. In this study, the possible functional role of purinergic 2 receptors during MSC endothelial and smooth muscle differentiation was investigated. Methods and Results: Human MSCs were isolated from liposuction materials. Then, endothelial and smooth muscle-like cells were differentiated and characterized by specific markers via Reverse Transcriptase-PCR (RT-PCR), Western blot and immunochemical stainings. Interestingly, some purinergic 2 receptor subtypes were found to be differently regulated during these specific lineage commitments: P2Y4 and P2Y14 were involved in the early stage commitment while P2Y1 was the key player in controlling MSC differentiation towards either endothelial or smooth muscle cells. The administration of natural and artificial purinergic 2 receptor agonists and antagonists had a direct influence on these differentiations. Moreover, a feedback loop via exogenous extracellular nucleotides on these particular differentiations was shown by apyrase digest. Conclusions: Purinergic 2 receptors play a crucial role during the differentiation towards endothelial and smooth muscle cell lineages. Some highly selective and potent artificial purinergic 2 ligands can control hMSC differentiation, which might improve the use of adult stem cells in cardiovascular tissue engineering in the future.
2-methylacetoacetyl-coenzyme A thiolase (beta-ketothiolase) deficiency: one disease - two pathways
(2020)
Background: 2-methylacetoacetyl-coenzyme A thiolase deficiency (MATD; deficiency of mitochondrial acetoacetyl-coenzyme A thiolase T2/ “beta-ketothiolase”) is an autosomal recessive disorder of ketone body utilization and isoleucine degradation due to mutations in ACAT1.
Methods: We performed a systematic literature search for all available clinical descriptions of patients with MATD. Two hundred forty-four patients were identified and included in this analysis. Clinical course and biochemical data are presented and discussed.
Results: For 89.6% of patients at least one acute metabolic decompensation was reported. Age at first symptoms ranged from 2 days to 8 years (median 12 months). More than 82% of patients presented in the first 2 years of life, while manifestation in the neonatal period was the exception (3.4%). 77.0% (157 of 204 patients) of patients showed normal psychomotor development without neurologic abnormalities. Conclusion: This comprehensive data analysis provides a systematic overview on all cases with MATD identified in the literature. It demonstrates that MATD is a rather benign disorder with often favourable outcome, when compared with many other organic acidurias.
Background: 3-hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMGCLD) is an autosomal recessive disorder of ketogenesis and leucine degradation due to mutations in HMGCL.
Method: We performed a systematic literature search to identify all published cases. Two hundred eleven patients of whom relevant clinical data were available were included in this analysis. Clinical course, biochemical findings and mutation data are highlighted and discussed. An overview on all published HMGCL variants is provided.
Results: More than 95% of patients presented with acute metabolic decompensation. Most patients manifested within the first year of life, 42.4% already neonatally. Very few individuals remained asymptomatic. The neurologic long-term outcome was favorable with 62.6% of patients showing normal development.
Conclusion: This comprehensive data analysis provides a systematic overview on all published cases with HMGCLD including a list of all known HMGCL mutations.
Background and Objectives: In advanced β-cell dysfunction, proinsulin is increasingly replacing insulin as major component of the secretion product. It has been speculated that proinsulin has at least the same adipogenic potency than insulin, leading to an increased tendency of lipid tissue formation in patients with late stage β-cell dysfunction. Methods and Results: Mesenchymal stem cells obtained from liposuction material were grown in differentiation media containing insulin (0.01 μmol), proinsulin (0.01 μmol) or insulin+proinsulin (each 0.005 μmol). Cell culture supernatants were taken from these experiments and an untreated control at weeks 1, 2, and 3, and were stored at -80°C until analysis. Cell differentiation was microscopically supervised and adiponectin concentrations were measured as marker for differentiation into mature lipid cells. This experiment was repeated three times. No growth of lipid cells and no change in adiponectin values was observed in the negative control group (after 7/14/12 days: 3.2±0.5/3.3±0.1/4.4±0.5 ng/ml/12 h). A continuous differentiation into mature adipocytes (also confirmed by Red-Oil-staining) and a corresponding increase in adiponectin values was observed in the experiments with insulin (3.6±1.9/5.1±1.4/13.3±1.5 ng/ml/12 h; p<0.05 week 1 vs. week 3) and proinsulin (3.3±1.2/3.5±0.3/12.2±1.2 ng/ml/12 h; p<0.05). Comparable effects were seen with the insulin/proinsulin combination. Conclusions: Proinsulin has the same adipogenic potential than insulin in vitro. Proinsulin has only 10∼20% of the glucose-lowering effect of insulin. It can be speculated that the adipogenic potential of proinsulin may be a large contributor to the increased body weight problems in patients with type 2 diabetes and advanced β-cell dysfunction.
Background: Type 2 diabetes mellitus is associated with increased cardiovascular risk. One laboratory marker for cardiovascular risk assessment is high-sensitivity C-reactive protein (hsCRP).
Methods: This cross-sectional study attempted to analyze the association of hsCRP levels with insulin resistance, β-cell dysfunction and macrovascular disease in 4270 non-insulin-treated patients with type 2 diabetes [2146 male, 2124 female; mean age ±SD, 63.9±11.1years; body mass index (BMI) 30.1±5.5kg/m2; disease duration 5.4±5.6years; hemoglobin A1c (HbA1c) 6.8±1.3%]. It consisted of a single morning visit with collection of a fasting blood sample. Observational parameters included several clinical scores and laboratory biomarkers.
Results: Stratification into cardiovascular risk groups according to hsCRP levels revealed that 934 patients had low risk (hsCRP <1mg/L), 1369 patients had intermediate risk (hsCRP 1–3mg/L), 1352 patients had high risk (hsCRP >3–10mg/L), and 610 patients had unspecific hsCRP elevation (>10mg/L). Increased hsCRP levels were associated with other indicators of diabetes-related cardiovascular risk (homeostatic model assessment, intact proinsulin, insulin, BMI, β-cell dysfunction, all p<0.001), but showed no correlation with disease duration or glucose control. The majority of the patients were treated with diet (34.1%; hsCRP levels 2.85±2.39mg/L) or metformin monotherapy (21.1%; 2.95±2.50mg/L hsCRP). The highest hsCRP levels were observed in patients treated with sulfonylurea (17.0%; 3.00±2.43mg/L).
Conclusions: Our results indicate that hsCRP may be used as a cardiovascular risk marker in patients with type 2 diabetes mellitus and should be evaluated in further prospective studies.
Although p27 plays a central role in cell cycle regulation, its role in breast cancer prognosis is controversial. Furthermore, the p27 gene CDKN1B carries a polymorphism with unknown functional relevance. This study was designed to evaluate p27 expression and p27 genotyping with respect to early breast cancer prognosis. 279 patients with infiltrating metastasis-free breast cancer were included in this study. p27 expression was determined in tumor tissue specimens from 261 patients by immunohistochemistry. From 108 patients, the CDKN1B genotype was examined by PCR and subsequent direct sequencing. 55.2% of the tumors were considered p27 positive. p27 expression did not correlate with any of the established parameters except for nodal involvement but significantly correlated to prolonged disease-free survival. In 35% of the tumors analyzed, the CDKN1B gene showed a polymorphism at codon 109 (V109G). The V109G polymorphism correlated with greater nodal involvement. In the node-negative subgroup, V109G correlated significantly with a shortened disease-free survival. In conclusion, the determination of the CDKN1B genotype might be a powerful tool for the prognosis of patients with early breast cancer.