Technical Report / Hochschule Bonn-Rhein-Sieg University of Applied Sciences, Department of Computer Science

Publisher: Dean Prof. Dr. Wolfgang Heiden
Hochschule Bonn-Rhein-Sieg - University of Applied Sciences, Department of Computer Science
Sankt Augustin, Germany
ISSN 1869-5272
Hochschule Bonn-Rhein-Sieg - University of Applied Sciences, Department of Computer Science
Sankt Augustin, Germany
ISSN 1869-5272
Refine
Department, Institute
Document Type
- Report (28)
- Master's Thesis (5)
Year of publication
Language
- English (33) (remove)
Keywords
- Robotik (6)
- 3D-Scanner (2)
- Object Detection (2)
- Virtuelle Realität (2)
- computer vision (2)
- 802.11 (1)
- Active Learning (1)
- Adaptive Behavior (1)
- Adaptive Case Management (1)
- Agents (1)
05-2020
The ability to finely segment different instances of various objects in an environment forms a critical tool in the perception tool-box of any autonomous agent. Traditionally instance segmentation is treated as a multi-label pixel-wise classification problem. This formulation has resulted in networks that are capable of producing high-quality instance masks but are extremely slow for real-world usage, especially on platforms with limited computational capabilities. This thesis investigates an alternate regression-based formulation of instance segmentation to achieve a good trade-off between mask precision and run-time. Particularly the instance masks are parameterized and a CNN is trained to regress to these parameters, analogous to bounding box regression performed by an object detection network.
In this investigation, the instance segmentation masks in the Cityscape dataset are approximated using irregular octagons and an existing object detector network (i.e., SqueezeDet) is modified to regresses to the parameters of these octagonal approximations. The resulting network is referred to as SqueezeDetOcta. At the image boundaries, object instances are only partially visible. Due to the convolutional nature of most object detection networks, special handling of the boundary adhering object instances is warranted. However, the current object detection techniques seem to be unaffected by this and handle all the object instances alike. To this end, this work proposes selectively learning only partial, untainted parameters of the bounding box approximation of the boundary adhering object instances. Anchor-based object detection networks like SqueezeDet and YOLOv2 have a discrepancy between the ground-truth encoding/decoding scheme and the coordinate space used for clustering, to generate the prior anchor shapes. To resolve this disagreement, this work proposes clustering in a space defined by two coordinate axes representing the natural log transformations of the width and height of the ground-truth bounding boxes.
When both SqueezeDet and SqueezeDetOcta were trained from scratch, SqueezeDetOcta lagged behind the SqueezeDet network by a massive ≈ 6.19 mAP. Further analysis revealed that the sparsity of the annotated data was the reason for this lackluster performance of the SqueezeDetOcta network. To mitigate this issue transfer-learning was used to fine-tune the SqueezeDetOcta network starting from the trained weights of the SqueezeDet network. When all the layers of the SqueezeDetOcta were fine-tuned, it outperformed the SqueezeDet network paired with logarithmically extracted anchors by ≈ 0.77 mAP. In addition to this, the forward pass latencies of both SqueezeDet and SqueezeDetOcta are close to ≈ 19ms. Boundary adhesion considerations, during training, resulted in an improvement of ≈ 2.62 mAP of the baseline SqueezeDet network. A SqueezeDet network paired with logarithmically extracted anchors improved the performance of the baseline SqueezeDet network by ≈ 1.85 mAP.
In summary, this work demonstrates that if given sufficient fine instance annotated data, an existing object detection network can be modified to predict much finer approximations (i.e., irregular octagons) of the instance annotations, whilst having the same forward pass latency as that of the bounding box predicting network. The results justify the merits of logarithmically extracted anchors to boost the performance of any anchor-based object detection network. The results also showed that the special handling of image boundary adhering object instances produces more performant object detectors.
04-2020
A Comparative Study of Uncertainty Estimation Methods in Deep Learning Based Classification Models
(2020)
Deep learning models produce overconfident predictions even for misclassified data. This work aims to improve the safety guarantees of software-intensive systems that use deep learning based classification models for decision making by performing comparative evaluation of different uncertainty estimation methods to identify possible misclassifications.
In this work, uncertainty estimation methods applicable to deep learning models are reviewed and those which can be seamlessly integrated to existing deployed deep learning architectures are selected for evaluation. The different uncertainty estimation methods, deep ensembles, test-time data augmentation and Monte Carlo dropout with its variants, are empirically evaluated on two standard datasets (CIFAR-10 and CIFAR-100) and two custom classification datasets (optical inspection and RoboCup@Work dataset). A relative ranking between the methods is provided by evaluating the deep learning classifiers on various aspects such as uncertainty quality, classifier performance and calibration. Standard metrics like entropy, cross-entropy, mutual information, and variance, combined with a rank histogram based method to identify uncertain predictions by thresholding on these metrics, are used to evaluate uncertainty quality.
The results indicate that Monte Carlo dropout combined with test-time data augmentation outperforms all other methods by identifying more than 95% of the misclassifications and representing uncertainty in the highest number of samples in the test set. It also yields a better classifier performance and calibration in terms of higher accuracy and lower Expected Calibration Error (ECE), respectively. A python based uncertainty estimation library for training and real-time uncertainty estimation of deep learning based classification models is also developed.
03-2020
Human and robot tasks in household environments include actions such as carrying an object, cleaning a surface, etc. These tasks are performed by means of dexterous manipulation, and for humans, they are straightforward to accomplish. Moreover, humans perform these actions with reasonable accuracy and precision but with much less energy and stress on the actuators (muscles) than the robots do. The high agility in controlling their forces and motions is actually due to "laziness", i.e. humans exploit the existing natural forces and constraints to execute the tasks.
The above-mentioned properties of the human lazy strategy motivate us to relax the problem of controlling robot motions and forces, and solve it with the help of the environment. Therefore, in this work, we developed a lazy control strategy, i.e. task specification models and control architectures that relax several aspects of robot control by exploiting prior knowledge about the task and environment. The developed control strategy is realized in four different robotics use cases. In this work, the Popov-Vereshchagin hybrid dynamics solver is used as one of the building blocks in the proposed control architectures. An extension of the solver’s interface with the artificial Cartesian force and feed-forward joint torque task-drivers is proposed in this thesis.
To validate the proposed lazy control approach, an experimental evaluation was performed in a simulation environment and on a real robot platform.
02-2020
Object detectors have improved considerably in the last years by using advanced Convolutional Neural Networks (CNNs) architectures. However, many detector hyper-parameters are not generally tuned, and they are used with values set by the detector authors. Blackbox optimization methods have gained more attention in recent years because of its ability to optimize the hyper-parameters of various machine learning algorithms and deep learning models. However, these methods are not explored in improving CNN-based object detector's hyper-parameters. In this research work, we propose the use of blackbox optimization methods such as Gaussian Process based Bayesian Optimization (BOGP), Sequential Model-based Algorithm Configuration (SMAC), and Covariance Matrix Adaptation Evolution Strategy (CMA-ES) to tune the hyper-parameters in Faster R-CNN and Single Shot MultiBox Detector (SSD). In Faster R-CNN, tuning the input image size, prior box anchor scales and ratios using BOGP, SMAC, and CMA-ES has increased the performance around 1.5% in terms of Mean Average Precision (mAP) on PASCAL VOC. Tuning the anchor scales of SSD has increased the mAP by 3% on PASCAL VOC and marine debris datasets. On the COCO dataset with SSD, mAP improvement is observed in the medium and large objects, but mAP decreases by 1% in small objects. The experimental results show that the blackbox optimization methods have proved to increase the mAP performance by optimizing the object detectors. Moreover, it has achieved better results than the hand-tuned configurations in most of the cases.
01-2020
An essential measure of autonomy in service robots designed to assist humans is adaptivity to the various contexts of human-oriented tasks. These robots may have to frequently execute the same action, but subject to subtle variations in task parameters that determine optimal behaviour. Such actions are traditionally executed by robots using pre-determined, generic motions, but a better approach could utilize robot arm maneuverability to learn and execute different trajectories that work best in each context.
In this project, we explore a robot skill acquisition procedure that allows incorporating contextual knowledge, adjusting executions according to context, and improvement through experience, as a step towards more adaptive service robots. We propose an apprenticeship learning approach to achieving context-aware action generalisation on the task of robot-to-human object hand-over. The procedure combines learning from demonstration, with which a robot learns to imitate a demonstrator’s execution of the task, and a reinforcement learning strategy, which enables subsequent experiential learning of contextualized policies, guided by information about context that is integrated into the learning process. By extending the initial, static hand-over policy to a contextually adaptive one, the robot derives and executes variants of the demonstrated action that most appropriately suit the current context. We use dynamic movement primitives (DMPs) as compact motion representations, and a model-based Contextual Relative Entropy Policy Search (C-REPS) algorithm for learning policies that can specify hand-over position, trajectory shape, and execution speed, conditioned on context variables. Policies are learned using simulated task executions, before transferring them to the robot and evaluating emergent behaviours.
We demonstrate the algorithm’s ability to learn context-dependent hand-over positions, and new trajectories, guided by suitable reward functions, and show that the current DMP implementation limits learning context-dependent execution speeds. We additionally conduct a user study involving participants assuming different postures and receiving an object from the robot, which executes hand-overs by either exclusively imitating a demonstrated motion, or selecting hand-over positions based on learned contextual policies and adapting its motion accordingly. The results confirm the hypothesized improvements in the robot’s perceived behaviour when it is context-aware and adaptive, and provide useful insights that can inform future developments.
03-2019
Currently, a variety of methods exist for creating different types of spatio-temporal world models. Despite the numerous methods for this type of modeling, there exists no methodology for comparing the different approaches or their suitability for a given application e.g. logistics robots. In order to establish a means for comparing and selecting the best-fitting spatio-temporal world modeling technique, a methodology and standard set of criteria must be established. To that end, state-of-the-art methods for this type of modeling will be collected, listed, and described. Existing methods used for evaluation will also be collected where possible.
Using the collected methods, new criteria and techniques will be devised to enable the comparison of various methods in a qualitative manner. Experiments will be proposed to further narrow and ultimately select a spatio-temporal model for a given purpose. An example network of autonomous logistic robots, ROPOD, will serve as a case study used to demonstrate the use of the new criteria. This will also serve to guide the design of future experiments that aim to select a spatio-temporal world modeling technique for a given task. ROPOD was specifically selected as it operates in a real-world, human shared environment. This type of environment is desirable for experiments as it provides a unique combination of common and novel problems that arise when selecting an appropriate spatio-temporal world model. Using the developed criteria, a qualitative analysis will be applied to the selected methods to remove unfit options.
Then, experiments will be run on the remaining methods to provide comparative benchmarks. Finally, the results will be analyzed and recommendations to ROPOD will be made.
02-2019
Multi-robot systems (MRS) are capable of performing a set of tasks by dividing them among the robots in the fleet. One of the challenges of working with multirobot systems is deciding which robot should execute each task. Multi-robot task allocation (MRTA) algorithms address this problem by explicitly assigning tasks to robots with the goal of maximizing the overall performance of the system. The indoor transportation of goods is a practical application of multi-robot systems in the area of logistics. The ROPOD project works on developing multi-robot system solutions for logistics in hospital facilities. The correct selection of an MRTA algorithm is crucial for enhancing transportation tasks. Several multi-robot task allocation algorithms exist in the literature, but just few experimental comparative analysis have been performed. This project analyzes and assesses the performance of MRTA algorithms for allocating supply cart transportation tasks to a fleet of robots. We conducted a qualitative analysis of MRTA algorithms, selected the most suitable ones based on the ROPOD requirements, implemented four of them (MURDOCH, SSI, TeSSI, and TeSSIduo), and evaluated the quality of their allocations using a common experimental setup and 10 experiments. Our experiments include off-line and semi on-line allocation of tasks as well as scalability tests and use virtual robots implemented as Docker containers. This design should facilitate deployment of the system on the physical robots. Our experiments conclude that TeSSI and TeSSIduo suit best the ROPOD requirements. Both use temporal constraints to build task schedules and run in polynomial time, which allow them to scale well with the number of tasks and robots. TeSSI distributes the tasks among more robots in the fleet, while TeSSIduo tends to use a lower percentage of the available robots.
Subsequently, we have integrated TeSSI and TeSSIduo to perform multi-robot task allocation for the ROPOD project.
01-2019
Interactive Object Detection
(2019)
The success of state-of-the-art object detection methods depend heavily on the availability of a large amount of annotated image data. The raw image data available from various sources are abundant but non-annotated. Annotating image data is often costly, time-consuming or needs expert help. In this work, a new paradigm of learning called Active Learning is explored which uses user interaction to obtain annotations for a subset of the dataset. The goal of active learning is to achieve superior object detection performance with images that are annotated on demand. To realize active learning method, the trade-off between the effort to annotate (annotation cost) unlabeled data and the performance of object detection model is minimised.
Random Forests based method called Hough Forest is chosen as the object detection model and the annotation cost is calculated as the predicted false positive and false negative rate. The framework is successfully evaluated on two Computer Vision benchmark and two Carl Zeiss custom datasets. Also, an evaluation of RGB, HoG and Deep features for the task is presented.
Experimental results show that using Deep features with Hough Forest achieves the maximum performance. By employing Active Learning, it is demonstrated that performance comparable to the fully supervised setting can be achieved by annotating just 2.5% of the images. To this end, an annotation tool is developed for user interaction during Active Learning.
03-2018
Friction effects impose a requirement for the supplementary amount of torque to be produced in actuators for a robot to move, which in turn increases energy consumption. We cannot eliminate friction, but we can optimize motions to make them more energy efficient, by considering friction effects in motion computations. Optimizing motions means computing efficient joint torques/accelerations based on different friction torques imposed in each joint. Existing friction forces can be used for supporting certain types of arm motions, e.g standing still.
Reducing energy consumption of robot's arms will provide many benefits, such as longer battery life of mobile robots, reducing heat in motor systems, etc.
The aim of this project is extending an already available constrained hybrid dynamic solver, by including static friction effects in the computations of energy optimal motions. When the algorithm is extended to account for static friction factors, a convex optimization (maximization) problem must be solved.
The author of this hybrid dynamic solver has briefly outlined the approach for including static friction forces in computations of motions, but without providing a detailed derivation of the approach and elaboration that will show its correctness. Additionally, the author has outlined the idea for improving the computational efficiency of the approach, but without providing its derivation.
In this project, the proposed approach for extending the originally formulated algorithm has been completely derived and evaluated in order to show its feasibility. The evaluation is conducted in simulation environment with one DOF robot arm, and it shows correct results from the computation of motions. Furthermore, this project presents the derivation of the outlined method for improving the computational efficiency of the extended solver.
01-2018
Motion capture, often abbreviated mocap, generally aims at recording any kind of motion -- be it from a person or an object -- and to transform it to a computer-readable format. Especially the data recorded from (professional and non-professional) human actors are typically used for analysis in e.g. medicine, sport sciences, or biomechanics for evaluation of human motion across various factors. Motion capture is also widely used in the entertainment industry: In video games and films realistic motion sequences and animations are generated through data-driven motion synthesis based on recorded motion (capture) data.
Although the amount of publicly available full-body-motion capture data is growing, the research community still lacks a comparable corpus of specialty motion data such as, e.g. prehensile movements for everyday actions. On the one hand, such data can be used to enrich (hand-over animation) full-body motion capture data - usually captured without hand motion data due to the drastic dimensional difference in articulation detail. On the other hand, it provides means to classify and analyse prehensile movements with or without respect to the concrete object manipulated and to transfer the acquired knowledge to other fields of research (e.g. from 'pure' motion analysis to robotics or biomechanics).
Therefore, the objective of this motion capture database is to provide well-documented, free motion capture data for research purposes.
The presented database GraspDB14 in sum contains over 2000 prehensile movements of ten different non-professional actors interacting with 15 different objects. Each grasp was realised five times by each actor. The motions are systematically named containing an (anonymous) identifier for each actor as well as one for the object grasped or interacted with.
The data were recorded as joint angles (and raw 8-bit sensor data) which can be transformed into positional 3D data (3D trajectories of each joint).
In this document, we provide a detailed description on the GraspDB14-database as well as on its creation (for reproducibility).
Chapter 2 gives a brief overview of motion capture techniques, freely available motion capture databases for both, full body motions and hand motions, and a short section on how such data is made useful and re-used. Chapter 3 describes the database recording process and details the recording setup and the recorded scenarios. It includes a list of objects and performed types of interaction. Chapter 4 covers used file formats, contents, and naming patterns. We provide various tools for parsing, conversion, and visualisation of the recorded motion sequences and document their usage in chapter 5.
04-2017
Emotional communication is a key element of habilitation care of persons with dementia. It is, therefore, highly preferable for assistive robots that are used to supplement human care provided to persons with dementia, to possess the ability to recognize and respond to emotions expressed by those who are being cared-for. Facial expressions are one of the key modalities through which emotions are conveyed. This work focuses on computer vision-based recognition of facial expressions of emotions conveyed by the elderly.
Although there has been much work on automatic facial expression recognition, the algorithms have been experimentally validated primarily on young faces. The facial expressions on older faces has been totally excluded. This is due to the fact that the facial expression databases that were available and that have been used in facial expression recognition research so far do not contain images of facial expressions of people above the age of 65 years. To overcome this problem, we adopt a recently published database, namely, the FACES database, which was developed to address exactly the same problem in the area of human behavioural research. The FACES database contains 2052 images of six different facial expressions, with almost identical and systematic representation of the young, middle-aged and older age-groups.
In this work, we evaluate and compare the performance of two of the existing imagebased approaches for facial expression recognition, over a broad spectrum of age ranging from 19 to 80 years. The evaluated systems use Gabor filters and uniform local binary patterns (LBP) for feature extraction, and AdaBoost.MH with multi-threshold stump learner for expression classification. We have experimentally validated the hypotheses that facial expression recognition systems trained only on young faces perform poorly on middle-aged and older faces, and that such systems confuse ageing-related facial features on neutral faces with other expressions of emotions. We also identified that, among the three age-groups, the middle-aged group provides the best generalization performance across the entire age spectrum. The performance of the systems was also compared to the performance of humans in recognizing facial expressions of emotions. Some similarities were observed, such as, difficulty in recognizing the expressions on older faces, and difficulty in recognizing the expression of sadness.
The findings of our work establish the need for developing approaches for facial expression recognition that are robust to the effects of ageing on the face. The scientific results of our work can be used as a basis to guide future research in this direction.
03-2017
Population ageing and growing prevalence of disability have resulted in a growing need for personal care and assistance. The insufficient supply of personal care workers and the rising costs of long-term care have turned this phenomenon into a greater social concern. This has resulted in a growing interest in assistive technology in general, and assistive robots in particular, as a means of substituting or supplementing the care provided by humans, and as a means of increasing the independence and overall quality of life of persons with special needs. Although many assistive robots have been developed in research labs world-wide, very few are commercially available. One of the reasons for this, is the cost. One way of optimising cost is to develop solutions that address specific needs of users. As a precursor to this, it is important to identify gaps between what the users need and what the technology (assistive robots) currently provides. This information is obtained through technology mapping.
The current literature lacks a mapping between user needs and assistive robots, at the level of individual systems. The user needs are not expressed in uniform terminology across studies, which makes comparison of results difficult. In this research work, we have illustrated the technology mapping of assistive robots using the International Classification of Functioning, Disability and Health (ICF). ICF provides standard terminology for expressing user needs in detail. Expressing the assistive functions of robots also in ICF terminology facilitates communication between different stakeholders (rehabilitation professionals, robotics researchers, etc.).
We also investigated existing taxonomies for assistive robots. It was observed that there is no widely accepted taxonomy for classifying assistive robots. However, there exists an international standard, ISO 9999, which classifies commercially available assistive products. The applicability of the latest revision of ISO 9999 standard for classifying mobility assistance robots has been studied. A partial classification of assistive robots based on ISO 9999 is suggested. The taxonomy and technology mapping are illustrated with the help of four robots that have the potential to provide mobility assistance. These are the SmartCane, the SmartWalker, MAid and Care-O-bot (R) 3. SmartCane, SmartWalker and MAid provide assistance by supporting physical movement. Care-O-bot (R) 3 provides assistance by reducing the need to move.
02-2017
Recent work in image captioning and scene-segmentation has shown significant results in the context of scene-understanding. However, most of these developments have not been extrapolated to research areas such as robotics. In this work we review the current state-ofthe- art models, datasets and metrics in image captioning and scenesegmentation. We introduce an anomaly detection dataset for the purpose of robotic applications, and we present a deep learning architecture that describes and classifies anomalous situations. We report a METEOR score of 16.2 and a classification accuracy of 97 %.
01-2017
This paper describes the security mechanisms of several wireless building automation technologies, namely ZigBee, EnOcean, ZWave, KNX, FS20, and Home-Matic. It is shown that none of the technologies provides the necessary measure ofsecurity that should be expected in building automation systems. One of the conclusions drawn is that software embedded in systems that are build for a lifetime of twenty years or more needs to be updatable.
05-2015
Extraction of text information from visual sources is an important component of many modern applications, for example, extracting the text from traffic signs on a road scene in an autonomous vehicle. For natural images or road scenes this is a unsolved problem. In this thesis the use of histogram of stroke widths (HSW) for character and noncharacter region classification is presented. Stroke widths are extracted using two methods. One is based on the Stroke Width Transform and another based on run lengths. The HSW is combined with two simple region features– aspect and occupancy ratios– and then a linear SVM is used as classifier. One advantage of our method over the state of the art is that it is script-independent and can also be used to verify detected text regions with the purpose of reducing false positives. Our experiments on generated datasets of Latin, CJK, Hiragana and Katakana characters show that the HSW is able to correctly classify at least 90% of the character regions, a similar figure is obtained for non-character regions. This performance is also obtained when training the HSW with one script and testing with a different one, and even when characters are rotated. On the English and Kannada portions of the Chars74K dataset we obtained over 95% correctly classified character regions. The use of raycasting for text line grouping is also proposed. By combining it with our HSW-based character classifier, a text detector based on Maximally Stable Extremal Regions (MSER) was implemented. The text detector was evaluated on our own dataset of road scenes from the German Autobahn, where 65% precision, 72% recall with a f-score of 69% was obtained. Using the HSW as a text verifier increases precision while slightly reducing recall. Our HSW feature allows the building of a script-independent and low parameter count classifier for character and non-character regions.
04-2015
Advanced driver assistance systems (ADAS) are technology systems and devices designed as an aid to the driver of a vehicle. One of the critical components of any ADAS is the traffic sign recognition module. For this module to achieve real-time performance, some preprocessing of input images must be done, which consists of a traffic sign detection (TSD) algorithm to reduce the possible hypothesis space. Performance of TSD algorithm is critical.
One of the best algorithms used for TSD is the Radial Symmetry Detector (RSD), which can detect both Circular [7] and Polygonal traffic signs [5]. This algorithm runs in real-time on high end personal computers, but computational performance of must be improved in order to be able to run in real-time in embedded computer platforms.
To improve the computational performance of the RSD, we propose a multiscale approach and the removal of a gaussian smoothing filter used in this algorithm. We evaluate the performance on both computation times, detection and false positive rates on a synthetic image dataset and on the german traffic sign detection benchmark [29].
We observed significant speedups compared to the original algorithm. Our Improved Radial Symmetry Detector is up to 5.8 times faster than the original on detecting Circles, up to 3.8 times faster on Triangle detection, 2.9 times faster on Square detection and 2.4 times faster on Octagon detection. All of this measurements were observed with better detection and false positive rates than the original RSD.
When evaluated on the GTSDB, we observed smaller speedups, in the range of 1.6 to 2.3 times faster for Circle and Regular Polygon detection, but for Circle detection we observed a decreased detection rate than the original algorithm, while for Regular Polygon detection we always observed better detection rates. False positive rates were high, in the range of 80% to 90%.
We conclude that our Improved Radial Symmetry Detector is a significant improvement of the Radial Symmetry Detector, both for Circle and Regular polygon detection. We expect that our improved algorithm will lead the way to obtain real-time traffic sign detection and recognition in embedded computer platforms.
01-2015
Rural areas often lack affordable broadband Internet connectivity, mainly due to the CAPEX and especially OPEX of traditional operator equipment [HEKN11]. This digital divide limits the access to knowledge, health care and other services for billions of people. Different approaches to close this gap were discussed in the last decade [SPNB08]. In most rural areas satellite bandwidth is expensive and cellular networks (3G,4G) as well as WiMAX suffer from the usually low population density making it hard to amortize the costs of a base station [SPNB08].
04-2014
Business process infrastructures like BPMS (Business Process Management Systems) and WfMS (Workflow Management Systems) traditionally focus on the automation of processes predefined at design time. This approach is well suited for routine tasks which are processed repeatedly and which are described by a predefined control flow. In contrast, knowledge-intensive work is more goal and data-driven and less control-flow oriented. Knowledge workers need the flexibility to decide dynamically at run-time and based on current context information on the best next process step to achieve a given goal. Obviously, in most practical scenarios, these decisions are complex and cannot be anticipated and modeled completely in a predefined process model. Therefore, adaptive and dynamic process management techniques are necessary to augment the control-flow oriented part of process management (which is still a need also for knowledge workers) with flexible, context-dependent, goaloriented support.
02-2014
A principal step towards solving diverse perception problems is segmentation. Many algorithms benefit from initially partitioning input point clouds into objects and their parts. In accordance with cognitive sciences, segmentation goal may be formulated as to split point clouds into locally smooth convex areas, enclosed by sharp concave boundaries. This goal is based on purely geometrical considerations and does not incorporate any constraints, or semantics, of the scene and objects being segmented, which makes it very general and widely applicable. In this work we perform geometrical segmentation of point cloud data according to the stated goal. The data is mapped onto a graph and the task of graph partitioning is considered. We formulate an objective function and derive a discrete optimization problem based on it. Finding the globally optimal solution is an NP-complete problem; in order to circumvent this, spectral methods are applied. Two algorithms that implement the divisive hierarchical clustering scheme are proposed. They derive graph partition by analyzing the eigenvectors obtained through spectral relaxation. The specifics of our application domain are used to automatically introduce cannot-link constraints in the clustering problem. The algorithms function in completely unsupervised manner and make no assumptions about shapes of objects and structures that they segment. Three publicly available datasets with cluttered real-world scenes and an abundance of box-like, cylindrical, and free-form objects are used to demonstrate convincing performance. Preliminary results of this thesis have been contributed to the International Conference on Autonomous Intelligent Systems (IAS-13).
01-2014
Design of a declarative language for task-oriented grasping and tool-use with dextrous robotic hands
(2014)
Apparently simple manipulation tasks for a human such as transportation or tool use are challenging to replicate in an autonomous service robot. Nevertheless, dextrous manipulation is an important aspect for a robot in many daily tasks. While it is possible to manufacture special-purpose hands for one specific task in industrial settings, a generalpurpose service robot in households must have flexible hands which can adapt to many tasks. Intelligently using tools enables the robot to perform tasks more efficiently and even beyond the designed capabilities. In this work a declarative domain-specific language, called Grasp Domain Definition Language (GDDL), is presented that allows the specification of grasp planning problems independently of a specific grasp planner. This design goal resembles the idea of the Planning Domain Definition Language (PDDL). The specification of GDDL requires a detailed analysis of the research in grasping in order to identify best practices in different domains that contribute to a grasp. These domains describe for instance physical as well as semantic properties of objects and hands. Grasping always has a purpose which is captured in the task domain definition. It enables the robot to grasp an object in a taskdependent manner. Suitable representations in these domains have to be identified and formalized for which a domain-driven software engineering approach is applied. This kind of modeling allows the specification of constraints which guide the composition of domain entity specifications. The domain-driven approach fosters reuse of domain concepts while the constraints enable the validation of models already during design time. A proof of concept implementation of GDDL into the GraspIt! grasp planner is developed. Preliminary results of this thesis have been published and presented on the IEEE International Conference on Robotics and Automation (ICRA).
03-2013
The objective of this research project is to develop a user-friendly and cost-effective interactive input device that allows intuitive and efficient manipulation of 3D objects (6 DoF) in virtual reality (VR) visualization environments with flat projections walls. During this project, it was planned to develop an extended version of a laser pointer with multiple laser beams arranged in specific patterns. Using stationary cameras observing projections of these patterns from behind the screens, it is planned to develop an algorithm for reconstruction of the emitter’s absolute position and orientation in space. Laser pointer concept is an intuitive way of interaction that would provide user with a familiar, mobile and efficient navigation though a 3D environment. In order to navigate in a 3D world, it is required to know the absolute position (x, y and z position) and orientation (roll, pitch and yaw angles) of the device, a total of 6 degrees of freedom (DoF). Ordinary laser-based pointers when captured on a flat surface with a video camera system and then processed, will only provide x and y coordinates effectively reducing available input to 2 DoF only. In order to overcome this problem, an additional set of multiple (invisible) laser pointers should be used in the pointing device. These laser pointers should be arranged in a way that the projection of their rays will form one fixed dot pattern when intersected with the flat surface of projection screens. Images of such a pattern will be captured via a real-time camera-based system and then processed using mathematical re-projection algorithms. This would allow the reconstruction of the full absolute 3D pose (6 DoF) of the input device. Additionally, multi-user or collaborative work should be supported by the system, would allow several users to interact with a virtual environment at the same time. Possibilities to port processing algorithms into embedded processors or FPGAs will be investigated during this project as well.
02-2013
Realism and plausibility of computer controlled entities in entertainment software have been enhanced by adding both static personalities and dynamic emotions. Here a generic model is introduced which allows the transfer of findings from real-life personality studies to a computational model. This information is used for decision making. The introduction of dynamic event-based emotions enables adaptive behavior patterns. The advantages of this new model have been validated with a four-way crossroad in a traffic simulation. Driving agents using the introduced model enhanced by dynamics were compared to agents based on static personality profiles and simple rule-based behavior. It has been shown that adding an adaptive dynamic factor to agents improves perceivable plausibility and realism. It also supports coping with extreme situations in a fair and understandable way.
04-2012
The work presented in this paper focuses on the comparison of well-known and new fault-diagnosis algorithms in the robot domain. The main challenge for fault diagnosis is to allow the robot to effectively cope not only with internal hardware and software faults but with external disturbances and errors from dynamic and complex environments as well. Based on a study of literature covering fault-diagnosis algorithms, I selected four of these methods based on both linear and non-linear models, analysed and implemented them in a mathematical robot-model, representing a four-wheels-OMNI robot. In experiments I tested the ability of the algorithms to detect and identify abnormal behaviour and to optimize the model parameters for the given training data. The final goal was to point out the strengths of each algorithm and to figure out which method would best suit the demands of fault diagnosis for a particular robot.
03-2012
A robot (e.g. mobile manipulator) that interacts with its environment to perform its tasks, often faces situations in which it is unable to achieve its goals despite perfect functioning of its sensors and actuators. These situations occur when the behavior of the object(s) manipulated by the robot deviates from its expected course because of unforeseeable ircumstances. These deviations are experienced by the robot as unknown external faults. In this work we present an approach that increases reliability of mobile manipulators against the unknown external faults. This approach focuses on the actions of manipulators which involve releasing of an object. The proposed approach, which is triggered after detection of a fault, is formulated as a three-step scheme that takes a definition of a planning operator and an example simulation as its inputs. The planning operator corresponds to the action that fails because of the fault occurrence, whereas the example simulation shows the desired/expected behavior of the objects for the same action. In its first step, the scheme finds a description of the expected behavior of the objects in terms of logical atoms (i.e. description vocabulary). The description of the simulation is used by the second step to find limits of the parameters of the manipulated object. These parameters are the variables that define the releasing state of the object.
Using randomly chosen values of the parameters within these limits, this step creates different examples of the releasing state of the object. Each one of these examples is labelled as desired or undesired according to the behavior exhibited by the object (in the simulation), when the object is released in the state corresponded by the example. The description vocabulary is also used in labeling the examples autonomously. In the third step, an algorithm (i.e. N-Bins) uses the labelled examples to suggest the state for the object in which releasing it avoids the occurrence of unknown external faults.
The proposed N-Bins algorithm can also be used for binary classification problems. Therefore, in our experiments with the proposed approach we also test its prediction ability along with the analysis of the results of our approach. The results show that under the circumstances peculiar to our approach, N-Bins algorithm shows reasonable prediction accuracy where other state of the art classification algorithms fail to do so. Thus, N-Bins also extends the ability of a robot to predict the behavior of the object to avoid unknown external faults. In this work we use simulation environment OPENRave that uses physics engine ODE to simulate the dynamics of rigid bodies.