Refine
Departments, institutes and facilities
- Fachbereich Informatik (55)
- Institut für Technik, Ressourcenschonung und Energieeffizienz (TREE) (50)
- Fachbereich Ingenieurwissenschaften und Kommunikation (10)
- Präsidium (9)
- Stabsstelle Kommunikation und Marketing (9)
- Graduierteninstitut (3)
- Internationales Zentrum für Nachhaltige Entwicklung (IZNE) (3)
- Institut für KI und Autonome Systeme (A2S) (2)
- Institut für Sicherheitsforschung (ISF) (1)
- Institute of Visual Computing (IVC) (1)
Document Type
- Conference Object (41)
- Part of Periodical (13)
- Article (12)
- Report (7)
- Preprint (5)
- Doctoral Thesis (4)
- Book (monograph, edited volume) (1)
- Part of a Book (1)
- Diploma Thesis (1)
- Master's Thesis (1)
Year of publication
Keywords
- Quality diversity (6)
- Quality Diversity (4)
- UAV (4)
- Aerodynamics (3)
- Bayesian optimization (3)
- MAP-Elites (3)
- Surrogate Modeling (3)
- remote sensing (3)
- Autoencoder (2)
- Evolutionary Computation (2)
Introduction of a Reasoning Approach to Enhance Virtual Agent Perception Capabilities Subject
(2024)
Diese Masterarbeit präsentiert eine Weiterentwicklung des FIVIS Fahrradfahrsimulators [HHK+08, See22], um ein Konzept für zeitliches Schlussfolgern. Zeitliches Schlussfolgern ermöglicht es, Nicht-Spieler-Charakteren (NPCs) neues Wissen auf Basis zuvor erworbener Informationen abzuleiten und es in ihren Entscheidungsprozess einzubeziehen. Das Ziel besteht darin, die Glaubwürdigkeit des NPC-Verhaltens zu verbessern, indem es ihnen erlaubt, fehlerhafte Entscheidungen auf der Basis von mehrdeutigen oder irreführenden Informationen zu treffen. Der bestehende Simulator wurde um ein regelbasiertes Folgerungssystem erweitert, das den motorisierten NPCs ermöglicht, die Absichten von Fußgängern frühzeitig zu erkennen und in ihre Entscheidungsfindung zu integrieren. Zur Evaluation wurden drei realitätsnahe Verkehrssituationen innerhalb des FIVIS Fahrradfahrsimulators realisiert. Es konnte gezeigt werden, dass seltene Simulationsszenarien wie Verkehrsunfälle zwischen virtuellen Fußgängern und Autofahrern auf eine plausiblere und nicht deterministische Art und Weise simuliert werden können. Diese Szenarien treten nur unter bestimmten Bedingungen auf und auch nur dann, wenn der Entscheidungsprozess durch unvollständige, fehleranfällige oder mehrdeutige Eingabedaten beeinflusst wurde, sodass angemessene Entscheidungen schwer zu treffen waren. Dies bedeutet, dass das realisierte Konzept des zeitlichen Schlussfolgerns in der Lage ist, menschliche Fehler und Mehrdeutigkeit im Entscheidungsprozess von NPCs zu modellieren.
Eine Überprüfung der Leistungsentwicklung im Radsport geht bis heute mit der Durchführung einer spezifischen Leistungsdiagnostik unter Verwendung vorgegebener Testprotokolle einher. Durch die zwischenzeitlich stark gestiegene Popularität von »wearable devices« ist es gleichzeitig heutzutage sehr einfach, die Herzfrequenz im Alltag und bei sportlichen Aktivitäten aufzuzeichnen. Doch eine geeignete Modellierung der Herzfrequenz, die es ermöglicht, Rückschlüsse über die Leistungsentwicklung ziehen zu können, fehlt bislang. Die Herzfrequenzaufzeichnungen in Kombination mit einer phänomenologisch interpretierbaren Modellierung zu nutzen, um auf möglichst direkte Weise und ohne spezifische Anforderungen an die Trainingsfahrten Rückschlüsse über die Leistungsentwicklung ziehen zu können, bietet die Chance, sowohl im professionellen Radsport wie auch in der ambitionierten Radsportpraxis den Erkenntnisgewinn über die eigene Leistungsentwicklung maßgeblich zu vereinfachen. In der vorliegenden Arbeit wird ein neuartiges und phänomenologisch interpretierbares Modell zur Simulation und Prädiktion der Herzfrequenz beim Radsport vorgestellt und im Rahmen einer empirischen Studie validiert. Dieses Modell ermöglicht es, die Herzfrequenz (sowie andere Beanspruchungsparameter aus Atemgasanalysen) mit adäquater Genauigkeit zu simulieren und bei vorgegebener Wattbelastung zu prognostizieren. Weiterhin wird eine Methode zur Reduktion der Anzahl der kalibrierbaren freien Modellparameter vorgestellt und in zwei empirischen Studien validiert. Nach einer individualisierten Parameterreduktion kann das Modell mit lediglich einem einzigen freien Parameter verwendet werden. Dieser verbleibende freie Parameter bietet schließlich die Möglichkeit, im zeitlichen Verlauf mit dem Verlauf der Leistungsentwicklung verglichen zu werden. In zwei unterschiedlichen Studien zeigt sich, dass der freie Modellparameter grundsätzlich in der Lage zu sein scheint, den Verlauf der Leistungsentwicklung über die Zeit abzubilden.
The field of computational chemistry has seen a significant increase in the integration of machine learning concepts and algorithms. In this Perspective, we surveyed 179 open-source software projects, with corresponding peer-reviewed papers published within the last 5 years, to better understand the topics within the field being investigated by machine learning approaches. For each project, we provide a short description, the link to the code, the accompanying license type, and whether the training data and resulting models are made publicly available. Based on those deposited in GitHub repositories, the most popular employed Python libraries are identified. We hope that this survey will serve as a resource to learn about machine learning or specific architectures thereof by identifying accessible codes with accompanying papers on a topic basis. To this end, we also include computational chemistry open-source software for generating training data and fundamental Python libraries for machine learning. Based on our observations and considering the three pillars of collaborative machine learning work, open data, open source (code), and open models, we provide some suggestions to the community.
Machine learning-based solutions are frequently adapted in several applications that require big data in operations. The performance of a model that is deployed into operations is subject to degradation due to unanticipated changes in the flow of input data. Hence, monitoring data drift becomes essential to maintain the model’s desired performance. Based on the conducted review of the literature on drift detection, statistical hypothesis testing enables to investigate whether incoming data is drifting from training data. Because Maximum Mean Discrepancy (MMD) and Kolmogorov-Smirnov (KS) have shown to be reliable distance measures between multivariate distributions in the literature review, both were selected from several existing techniques for experimentation. For the scope of this work, the image classification use case was experimented with using the Stream-51 dataset. Based on the results from different drift experiments, both MMD and KS showed high Area Under Curve values. However, KS exhibited faster performance than MMD with fewer false positives. Furthermore, the results showed that using the pre-trained ResNet-18 for feature extraction maintained the high performance of the experimented drift detectors. Furthermore, the results showed that the performance of the drift detectors highly depends on the sample sizes of the reference (training) data and the test data that flow into the pipeline’s monitor. Finally, the results also showed that if the test data is a mixture of drifting and non-drifting data, the performance of the drift detectors does not depend on how the drifting data are scattered with the non-drifting ones, but rather their amount in the test set
Quality diversity algorithms can be used to efficiently create a diverse set of solutions to inform engineers' intuition. But quality diversity is not efficient in very expensive problems, needing 100.000s of evaluations. Even with the assistance of surrogate models, quality diversity needs 100s or even 1000s of evaluations, which can make it use infeasible. In this study we try to tackle this problem by using a pre-optimization strategy on a lower-dimensional optimization problem and then map the solutions to a higher-dimensional case. For a use case to design buildings that minimize wind nuisance, we show that we can predict flow features around 3D buildings from 2D flow features around building footprints. For a diverse set of building designs, by sampling the space of 2D footprints with a quality diversity algorithm, a predictive model can be trained that is more accurate than when trained on a set of footprints that were selected with a space-filling algorithm like the Sobol sequence. Simulating only 16 buildings in 3D, a set of 1024 building designs with low predicted wind nuisance is created. We show that we can produce better machine learning models by producing training data with quality diversity instead of using common sampling techniques. The method can bootstrap generative design in a computationally expensive 3D domain and allow engineers to sweep the design space, understanding wind nuisance in early design phases.
TREE Jahresbericht 2021/2022
(2023)
Das Institut TREE freut sich, ihnen den Jahresbericht der Jahre 2021 und 2022 präsentieren zu können. Blicken sie mit uns zurück auf zwei herausfordernde Jahre.
Unser neuer Doppel-Jahresbericht 2021/2022 enthält viele, interessante, Beiträgen unserer spannenden, interdisziplinären Forschungprojekte der Bereiche Energie, Modellbildung Simulation, Drohnenforschung, Materialien und Prozesse und Technikkommunikation.
This paper explores the role of artificial intelligence (AI) in elite sports. We approach the topic from two perspectives. Firstly, we provide a literature based overview of AI success stories in areas other than sports. We identified multiple approaches in the area of Machine Perception, Machine Learning and Modeling, Planning and Optimization as well as Interaction and Intervention, holding a potential for improving training and competition. Secondly, we discover the present status of AI use in elite sports. Therefore, in addition to another literature review, we interviewed leading sports scientist, which are closely connected to the main national service institute for elite sports in their countries. The analysis of this literature review and the interviews show that the most activity is carried out in the methodical categories of signal and image processing. However, projects in the field of modeling & planning have become increasingly popular within the last years. Based on these two perspectives, we extract deficits, issues and opportunities and summarize them in six key challenges faced by the sports analytics community. These challenges include data collection, controllability of an AI by the practitioners and explainability of AI results.
Künstliche Intelligenz (KI) ist aus der heutigen Gesellschaft kaum noch wegzudenken. Auch im Sport haben Methoden der KI in den letzten Jahren mehr und mehr Einzug gehalten. Ob und inwieweit dabei allerdings die derzeitigen Potenziale der KI tatsächlich ausgeschöpft werden, ist bislang nicht untersucht worden. Der Nutzen von Methoden der KI im Sport ist unbestritten, jedoch treten bei der Umsetzung in die Praxis gravierende Probleme auf, was den Zugang zu Ressourcen, die Verfügbarkeit von Experten und den Umgang mit den Methoden und Daten betrifft. Die Ursache für die, verglichen mit anderen Anwendungsgebieten, langsame An- bzw. Übernahme von Methoden der KI in den Spitzensport ist nach Hypothese des Autorenteams auf mehrere Mismatches zwischen dem Anwendungsfeld und den KI-Methoden zurückzuführen. Diese Mismatches sind methodischer, struktureller und auch kommunikativer Art. In der vorliegenden Expertise werden Vorschläge abgeleitet, die zur Auflösung der Mismatches führen können und zugleich neue Transfer- und Synergiemöglichkeiten aufzeigen. Außerdem wurden drei Use Cases zu Trainingssteuerung, Leistungsdiagnostik und Wettkampfdiagnostik exemplarisch umgesetzt. Dies erfolgte in Form entsprechender Projektbeschreibungen. Dabei zeigt die Ausarbeitung, auf welche Art und Weise Probleme, die heute noch bei der Verbindung zwischen KI und Sport bestehen, möglichst ausgeräumt werden können. Eine empirische Umsetzung des Use Case Trainingssteuerung erfolgte im Radsport, weshalb dieser ausführlicher dargestellt wird.
We consider multi-solution optimization and generative models for the generation of diverse artifacts and the discovery of novel solutions. In cases where the domain's factors of variation are unknown or too complex to encode manually, generative models can provide a learned latent space to approximate these factors. When used as a search space, however, the range and diversity of possible outputs are limited to the expressivity and generative capabilities of the learned model. We compare the output diversity of a quality diversity evolutionary search performed in two different search spaces: 1) a predefined parameterized space and 2) the latent space of a variational autoencoder model. We find that the search on an explicit parametric encoding creates more diverse artifact sets than searching the latent space. A learned model is better at interpolating between known data points than at extrapolating or expanding towards unseen examples. We recommend using a generative model's latent space primarily to measure similarity between artifacts rather than for search and generation. Whenever a parametric encoding is obtainable, it should be preferred over a learned representation as it produces a higher diversity of solutions.
TREE Jahresbericht 2019/2020
(2021)
Der Jahresbericht soll in seiner Breite als auch in seiner Tiefe die Stärken unserer gemeinschaftlichen Anstrengungen im Forschungsfeld der nachhaltigen Technologien aufzeigen: interdisziplinär, forschungsstark, nachwuchsfördernd und gesellschaftszugewandt.
Im vergangenen Jahr war die Pandemie auch für das Insitut TREE eine Herausforderung. Wie die Mitglieder mit der Umstellung auf eine hauptsächlich online stattfindende Kommunikation umgegangen sind und wie das Hochschulleben sich dadurch verändert hat, wurde im Jahresbericht unter "See you online" festgehalten. Auch der Wechsel im Direktorium des Instituts ist Thema des diesjährigen Jahresberichts. Unter den Hauptthemen "Wissenschaftstransfer", "TREE und Wirtschaft" und "Transfer Öffentlichkeit" können sie die wichtigsten Ereignisse für das Institut in den Jahren 2019 und 2020 nachlesen.
In this thesis it is posed that the central object of preference discovery is a co-creative process in which the Other can be represented by a machine. It explores efficient methods to enhance introverted intuition using extraverted intuition's communication lines. Possible implementations of such processes are presented using novel algorithms that perform divergent search to feed the users' intuition with many examples of high quality solutions, allowing them to take influence interactively. The machine feeds and reflects upon human intuition, combining both what is possible and preferred. The machine model and the divergent optimization algorithms are the motor behind this co-creative process, in which machine and users co-create and interactively choose branches of an ad hoc hierarchical decomposition of the solution space.
The proposed co-creative process consists of several elements: a formal model for interactive co-creative processes, evolutionary divergent search, diversity and similarity, data-driven methods to discover diversity, limitations of artificial creative agents, matters of efficiency in behavioral and morphological modeling, visualization, a connection to prototype theory, and methods to allow users to influence artificial creative agents. This thesis helps putting the human back into the design loop in generative AI and optimization.
Computers can help us to trigger our intuition about how to solve a problem. But how does a computer take into account what a user wants and update these triggers? User preferences are hard to model as they are by nature vague, depend on the user’s background and are not always deterministic, changing depending on the context and process under which they were established. We pose that the process of preference discovery should be the object of interest in computer aided design or ideation. The process should be transparent, informative, interactive and intuitive. We formulate Hyper-Pref, a cyclic co-creative process between human and computer, which triggers the user’s intuition about what is possible and is updated according to what the user wants based on their decisions. We combine quality diversity algorithms, a divergent optimization method that can produce many, diverse solutions, with variational autoencoders to both model that diversity as well as the user’s preferences, discovering the preference hypervolume within large search spaces.
The way solutions are represented, or encoded, is usually the result of domain knowledge and experience. In this work, we combine MAP-Elites with Variational Autoencoders to learn a Data-Driven Encoding (DDE) that captures the essence of the highest-performing solutions while still able to encode a wide array of solutions. Our approach learns this data-driven encoding during optimization by balancing between exploiting the DDE to generalize the knowledge contained in the current archive of elites and exploring new representations that are not yet captured by the DDE. Learning representation during optimization allows the algorithm to solve high-dimensional problems, and provides a low-dimensional representation which can be then be re-used. We evaluate the DDE approach by evolving solutions for inverse kinematics of a planar arm (200 joint angles) and for gaits of a 6-legged robot in action space (a sequence of 60 positions for each of the 12 joints). We show that the DDE approach not only accelerates and improves optimization, but produces a powerful encoding that captures a bias for high performance while expressing a variety of solutions.
In optimization methods that return diverse solution sets, three interpretations of diversity can be distinguished: multi-objective optimization which searches diversity in objective space, multimodal optimization which tries spreading out the solutions in genetic space, and quality diversity which performs diversity maintenance in phenotypic space. We introduce niching methods that provide more flexibility to the analysis of diversity and a simple domain to compare and provide insights about the paradigms. We show that multiobjective optimization does not always produce much diversity, quality diversity is not sensitive to genetic neutrality and creates the most diverse set of solutions, and multimodal optimization produces higher fitness solutions. An autoencoder is used to discover phenotypic features automatically, producing an even more diverse solution set. Finally, we make recommendations about when to use which approach.
Abschlussbericht zum BMBF-Fördervorhaben Enabling Infrastructure for HPC-Applications (EI-HPC)
(2020)
The encoding of solutions in black-box optimization is a delicate, handcrafted balance between expressiveness and domain knowledge between exploring a wide variety of solutions, and ensuring that those solutions are useful. Our main insight is that this process can be automated by generating a dataset of high-performing solutions with a quality diversity algorithm (here, MAP-Elites), then learning a representation with a generative model (here, a Varia-tional Autoencoder) from that dataset. Our second insight is that this representation can be used to scale quality diversity optimization to higher dimensions-but only if we carefully mix solutions generated with the learned representation and those generated with traditional variation operators. We demonstrate these capabilities by learning an low-dimensional encoding for the inverse kinemat-ics of a thousand joint planar arm. The results show that learned representations make it possible to solve high-dimensional problems with orders of magnitude fewer evaluations than the standard MAP-Elites, and that, once solved, the produced encoding can be used for rapid optimization of novel, but similar, tasks. The presented techniques not only scale up quality diversity algorithms to high dimensions, but show that black-box optimization encodings can be automatically learned, rather than hand designed.
In complex, expensive optimization domains we often narrowly focus on finding high performing solutions, instead of expanding our understanding of the domain itself. But what if we could quickly understand the complex behaviors that can emerge in said domains instead? We introduce surrogate-assisted phenotypic niching, a quality diversity algorithm which allows to discover a large, diverse set of behaviors by using computationally expensive phenotypic features. In this work we discover the types of air flow in a 2D fluid dynamics optimization problem. A fast GPU-based fluid dynamics solver is used in conjunction with surrogate models to accurately predict fluid characteristics from the shapes that produce the air flow. We show that these features can be modeled in a data-driven way while sampling to improve performance, rather than explicitly sampling to improve feature models. Our method can reduce the need to run an infeasibly large set of simulations while still being able to design a large diversity of air flows and the shapes that cause them. Discovering diversity of behaviors helps engineers to better understand expensive domains and their solutions.
Optimization plays an essential role in industrial design, but is not limited to minimization of a simple function, such as cost or strength. These tools are also used in conceptual phases, to better understand what is possible. To support this exploration we focus on Quality Diversity (QD) algorithms, which produce sets of varied, high performing solutions. These techniques often require the evaluation of millions of solutions -- making them impractical in design cases. In this thesis we propose methods to radically improve the data-efficiency of QD with machine learning, enabling its application to design. In our first contribution, we develop a method of modeling the performance of evolved neural networks used for control and design. The structures of these networks grow and change, making them difficult to model -- but with a new method we are able to estimate their performance based on their heredity, improving data-efficiency by several times. In our second contribution we combine model-based optimization with MAP-Elites, a QD algorithm. A model of performance is created from known designs, and MAP-Elites creates a new set of designs using this approximation. A subset of these designs are the evaluated to improve the model, and the process repeats. We show that this approach improves the efficiency of MAP-Elites by orders of magnitude. Our third contribution integrates generative models into MAP-Elites to learn domain specific encodings. A variational autoencoder is trained on the solutions produced by MAP-Elites, capturing the common “recipe” for high performance. This learned encoding can then be reused by other algorithms for rapid optimization, including MAP-Elites. Throughout this thesis, though the focus of our vision is design, we examine applications in other fields, such as robotics. These advances are not exclusive to design, but serve as foundational work on the integration of QD and machine learning.
AErOmAt Abschlussbericht
(2020)
Das Projekt AErOmAt hatte zum Ziel, neue Methoden zu entwickeln, um einen erheblichen Teil aerodynamischer Simulationen bei rechenaufwändigen Optimierungsdomänen einzusparen. Die Hochschule Bonn-Rhein-Sieg (H-BRS) hat auf diesem Weg einen gesellschaftlich relevanten und gleichzeitig wirtschaftlich verwertbaren Beitrag zur Energieeffizienzforschung geleistet. Das Projekt führte außerdem zu einer schnelleren Integration der neuberufenen Antragsteller in die vorhandenen Forschungsstrukturen.
The initial phase in real world engineering optimization and design is a process of discovery in which not all requirements can be made in advance, or are hard to formalize. Quality diversity algorithms, which produce a variety of high performing solutions, provide a unique chance to support engineers and designers in the search for what is possible and high performing. In this work we begin to answer the question how a user can interact with quality diversity and turn it into an interactive innovation aid. By modeling a user's selection it can be determined whether the optimization is drifting away from the user's preferences. The optimization is then constrained by adding a penalty to the objective function. We present an interactive quality diversity algorithm that can take into account the user's selection. The approach is evaluated in a new multimodal optimization benchmark that allows various optimization tasks to be performed. The user selection drift of the approach is compared to a state of the art alternative on both a planning and a neuroevolution control task, thereby showing its limits and possibilities.
This work addresses the issue of finding an optimal flight zone for a side-by-side tracking and following Unmanned Aerial Vehicle(UAV) adhering to space-restricting factors brought upon by a dynamic Vector Field Extraction (VFE) algorithm. The VFE algorithm demands a relatively perpendicular field of view of the UAV to the tracked vehicle, thereby enforcing the space-restricting factors which are distance, angle and altitude. The objective of the UAV is to perform side-by-side tracking and following of a lightweight ground vehicle while acquiring high quality video of tufts attached to the side of the tracked vehicle. The recorded video is supplied to the VFE algorithm that produces the positions and deformations of the tufts over time as they interact with the surrounding air, resulting in an airflow model of the tracked vehicle. The present limitations of wind tunnel tests and computational fluid dynamics simulation suggest the use of a UAV for real world evaluation of the aerodynamic properties of the vehicle’s exterior. The novelty of the proposed approach is alluded to defining the specific flight zone restricting factors while adhering to the VFE algorithm, where as a result we were capable of formalizing a locally-static and a globally-dynamic geofence attached to the tracked vehicle and enclosing the UAV.
Are quality diversity algorithms better at generating stepping stones than objective-based search?
(2019)
The route to the solution of complex design problems often lies through intermediate "stepping stones" which bear little resemblance to the final solution. By greedily following the path of greatest fitness improvement, objective-based search overlooks and discards stepping stones which might be critical to solving the problem. Here, we hypothesize that Quality Diversity (QD) algorithms are a better way to generate stepping stones than objective-based search: by maintaining a large set of solutions which are of high-quality, but phenotypically different, these algorithms collect promising stepping stones while protecting them in their own "ecological niche". To demonstrate the capabilities of QD we revisit the challenge of recreating images produced by user-driven evolution, a classic challenge which spurred work in novelty search and illustrated the limits of objective-based search. We show that QD far outperforms objective-based search in matching user-evolved images. Further, our results suggest some intriguing possibilities for leveraging the diversity of solutions created by QD.
Change - shaping reality
(2019)
TREE Jahresbericht 2018
(2019)
In mathematical modeling by means of performance models, the Fitness-Fatigue Model (FF-Model) is a common approach in sport and exercise science to study the training performance relationship. The FF-Model uses an initial basic level of performance and two antagonistic terms (for fitness and fatigue). By model calibration, parameters are adapted to the subject’s individual physical response to training load. Although the simulation of the recorded training data in most cases shows useful results when the model is calibrated and all parameters are adjusted, this method has two major difficulties. First, a fitted value as basic performance will usually be too high. Second, without modification, the model cannot be simply used for prediction. By rewriting the FF-Model such that effects of former training history can be analyzed separately – we call those terms preload – it is possible to close the gap between a more realistic initial performance level and an athlete's actual performance level without distorting other model parameters and increase model accuracy substantially. Fitting error of the preload-extended FF-Model is less than 32% compared to the error of the FF-Model without preloads. Prediction error of the preload-extended FF-Model is around 54% of the error of the FF-Model without preloads.
TREE Jahresbericht 2017
(2018)
Knapp fünf Jahre nach Gründung als Fachbereichsinstitut und zwei Jahre nach Verankerung als zentrale wissenschaftliche Einrichtung der Hochschule präsentieren wir - nicht ganz ohne Stolz - den ersten Jahresbericht des Instituts TREE. Er soll in seiner Breite als auch in seiner Tiefe die Stärken unserer gemeinschaftlichen Anstrengungen im Forschungsfeld der nachhaltigen Technologien aufzeigen: interdisziplinär, forschungsstark, nachwuchsfördernd und gesellschaftszugewandt. TREE ist weiterhin ein im Aufbruch begriffenes Institut, aber gerade das Jahr 2017 zeigt auch, dass wir uns schon in der Wissenschaftslandkarte einen Namen machen konnten: nach NaWETec konnte mit dem Themenkomplex "Effiziente Transportalternativen" ein zweiter Forschungsschwerpunkt drittmittelgefördert etabliert werden. Erste Promotionen im Rahmen des TREE konnten erfolgreich abgeschlossen und interessante Nachwuchswissenschaftler für "FHKarrierewege" gewonnen werden.
Surrogate-assistance approaches have long been used in computationally expensive domains to improve the data-efficiency of optimization algorithms. Neuroevolution, however, has so far resisted the application of these techniques because it requires the surrogate model to make fitness predictions based on variable topologies, instead of a vector of parameters. Our main insight is that we can sidestep this problem by using kernel-based surrogate models, which require only the definition of a distance measure between individuals. Our second insight is that the well-established Neuroevolution of Augmenting Topologies (NEAT) algorithm provides a computationally efficient distance measure between dissimilar networks in the form of "compatibility distance", initially designed to maintain topological diversity. Combining these two ideas, we introduce a surrogate-assisted neuroevolution algorithm that combines NEAT and a surrogate model built using a compatibility distance kernel. We demonstrate the data-efficiency of this new algorithm on the low dimensional cart-pole swing-up problem, as well as the higher dimensional half-cheetah running task. In both tasks the surrogate-assisted variant achieves the same or better results with several times fewer function evaluations as the original NEAT.
The use of wearable devices or “wearables” in the physical activity domain has been increasing in the last years. These devices are used as training tools providing the user with detailed information about individual physiological responses and feedback to the physical training process. Advantages in sensor technology, miniaturization, energy consumption and processing power increased the usability of these wearables. Furthermore, available sensor technologies must be reliable, valid, and usable. Considering the variety of the existing sensors not all of them are suitable to be integrated in wearables. The application and development of wearables has to consider the characteristics of the physical training process to improve the effectiveness and efficiency as training tools. During physical training, it is essential to elicit individual optimal strain to evoke the desired adjustments to training. One important goal is to neither overstrain nor under challenge the user. Many wearables use heart rate as indicator for this individual strain. However, due to a variety of internal and external influencing factors, heart rate kinetics are highly variable making it difficult to control the stress eliciting individually optimal strain. For optimal training control it is essential to model and predict individual responses and adapt the external stress if necessary. Basis for this modeling is the valid and reliable recording of these individual responses. Depending on the heart rate kinetics and the obtained physiological data, different models and techniques are available that can be used for strain or training control. Aim of this review is to give an overview of measurement, prediction, and control of individual heart rate responses. Therefore, available sensor technologies measuring the individual heart rate responses are analyzed and approaches to model and predict these individual responses discussed. Additionally, the feasibility for wearables is analyzed.
A new method for design space exploration and optimization, Surrogate-Assisted Illumination (SAIL), is presented. Inspired by robotics techniques designed to produce diverse repertoires of behaviors for use in damage recovery, SAIL produces diverse designs that vary according to features specified by the designer. By producing high-performing designs with varied combinations of user-defined features a map of the design space is created. This map illuminates the relationship between the chosen features and performance, and can aid designers in identifying promising design concepts. SAIL is designed for use with compu-tationally expensive design problems, such as fluid or structural dynamics, and integrates approximative models and intelligent sampling of the objective function to minimize the number of function evaluations required. On a 2D airfoil optimization problem SAIL is shown to produce hundreds of diverse designs which perform competitively with those found by state-of-the-art black box optimization. Its capabilities are further illustrated in a more expensive 3D aerodynamic optimization task.
The MAP-Elites algorithm produces a set of high-performing solutions that vary according to features defined by the user. This technique to 'illuminate' the problem space through the lens of chosen features has the potential to be a powerful tool for exploring design spaces, but is limited by the need for numerous evaluations. The Surrogate-Assisted Illumination (SAIL) algorithm, introduced here, integrates approximative models and intelligent sampling of the objective function to minimize the number of evaluations required by MAP-Elites.
The ability of SAIL to efficiently produce both accurate models and diverse high-performing solutions is illustrated on a 2D airfoil design problem. The search space is divided into bins, each holding a design with a different combination of features. In each bin SAIL produces a better performing solution than MAP-Elites, and requires several orders of magnitude fewer evaluations. The CMA-ES algorithm was used to produce an optimal design in each bin: with the same number of evaluations required by CMA-ES to find a near-optimal solution in a single bin, SAIL finds solutions of similar quality in every bin.
The MAP-Elites algorithm produces a set of high-performing solutions that vary according to features defined by the user. This technique has the potential to be a powerful tool for design space exploration, but is limited by the need for numerous evaluations. The Surrogate-Assisted Illumination algorithm (SAIL), introduced here, integrates approximative models and intelligent sampling of the objective function to minimize the number of evaluations required by MAP-Elites.
The ability of SAIL to efficiently produce both accurate models and diverse high performing solutions is illustrated on a 2D airfoil design problem. The search space is divided into bins, each holding a design with a different combination of features. In each bin SAIL produces a better performing solution than MAP-Elites, and requires several orders of magnitude fewer evaluations. The CMA-ES algorithm was used to produce an optimal design in each bin: with the same number of evaluations required by CMA-ES to find a near-optimal solution in a single bin, SAIL finds solutions of similar quality in every bin.
Neuroevolution methods evolve the weights of a neural network, and in some cases the topology, but little work has been done to analyze the effect of evolving the activation functions of individual nodes on network size, an important factor when training networks with a small number of samples. In this work we extend the neuroevolution algorithm NEAT to evolve the activation function of neurons in addition to the topology and weights of the network. The size and performance of networks produced using NEAT with uniform activation in all nodes, or homogenous networks, is compared to networks which contain a mixture of activation functions, or heterogenous networks. For a number of regression and classification benchmarks it is shown that, (1) qualitatively different activation functions lead to different results in homogeneous networks, (2) the heterogeneous version of NEAT is able to select well performing activation functions, (3) the produced heterogeneous networks are significantly smaller than homogeneous networks.
Forschung@H-BRS
(2017)
Die Hochschule präsentiert mit ihrer neuen Broschüre "Forschung@H-BRS" ausgewählte Projekte von Wissenschaftlerinnen und Wissenschaftlern aus den Instituten und Fachbereichen in einem ansprechenden Format. Hochschulpräsident Harmtut Ihne blickt zu Anfang der Broschüre auf den Stand der anwendungsorientierten Forschung an der Hochschule und in Deutschland.