Refine
Department, Institute
Document Type
- Conference Object (2)
- Article (1)
Keywords
- Multilayer interaction (1)
- User interfaces (1)
- back-of-device interaction (1)
- haptic feedback (1)
- haptic interfaces (1)
- human computer interaction (1)
- mobile applications (1)
- pen interaction (1)
We present a novel, multilayer interaction approach that enables state transitions between spatially above-screen and 2D on-screen feedback layers. This approach supports the exploration of haptic features that are hard to simulate using rigid 2D screens. We accomplish this by adding a haptic layer above the screen that can be actuated and interacted with (pressed on) while the user interacts with on-screen content using pen input. The haptic layer provides variable firmness and contour feedback, while its membrane functionality affords additional tactile cues like texture feedback. Through two user studies, we look at how users can use the layer in haptic exploration tasks, showing that users can discriminate well between different firmness levels, and can perceive object contour characteristics. Demonstrated also through an art application, the results show the potential of multilayer feedback to extend on-screen feedback with additional widget, tool and surface properties, and for user guidance.
Touchscreen interaction suffers from occlusion problems as fingers can cover small targets, which makes interacting with such targets challenging. To improve touchscreen interaction accuracy and consequently the selection of small or hidden objects we introduce a back-of-device force feedback system for smartphones. We introduce a new solution that combines force feedback on the back to enhance touch input on the front screen. The interface includes three actuated pins at the back of a smartphone. All three pins are driven by micro servos and can be actuated up to a frequency of 50Hz and a maximum amplitude of 5mm. In a first psychophysical user study, we explored the limits of the system. Thereafter, we demonstrate through a performance study that the proposed interface can enhance touchscreen interaction precision, compared to state-of-the-art methods. In particular the selection of small targets performed remarkably well with force feedback. The study additionally shows that users subjectively felt significantly more accurate with force feedback. Based on the results, we discuss back-to-front feedback design issues and demonstrate potential applications through several prototypical concepts to illustrate where the back-of-device force feedback could be beneficial.