Refine
Department, Institute
Document Type
- Article (1)
- Conference Object (1)
Keywords
- accelerometer (1)
- posture analysis (1)
- spinal posture (1)
- wearable sensor (1)
Lower back pain is one of the most prevalent diseases in Western societies. A large percentage of European and American populations suffer from back pain at some point in their lives. One successful approach to address lower back pain is postural training, which can be supported by wearable devices, providing real-time feedback about the user’s posture. In this work, we analyze the changes in posture induced by postural training. To this end, we compare snapshots before and after training, as measured by the Gokhale SpineTracker™. Considering pairs of before and after snapshots in different positions (standing, sitting, and bending), we introduce a feature space, that allows for unsupervised clustering. We show that resulting clusters represent certain groups of postural changes, which are meaningful to professional posture trainers.
In western societies a huge percentage of the population suffers from some kind of back pain at least once in their life. There are several approaches addressing back pain by postural modifications. Postural training and activity can be tracked by various wearable devices most of which are based on accelerometers. We present research on the accuracy of accelerometer-based posture measurements. To this end, we took simultaneous recordings using an optical motion capture system and a system consisting of five accelerometers in three different settings: On a test robot, in a template, and on actual human backs. We compare the accelerometer-based spine curve reconstruction against the motion capture data. Results show that tilt values from the accelerometers are captured highly accurate, and the spine curve reconstruction works well.