Refine
Department, Institute
Mutations in ACY1, the gene encoding aminoacylase 1, cause a novel inborn error of metabolism
(2006)
Aminoacylase 1 (ACY1) deficiency is a recently described inborn error of metabolism. Most of the patients reported so far have presented with rather heterogeneous neurologic symptoms. At this moment, it is not clear whether ACY1 deficiency represents a true metabolic disease with a causal relationship between the enzyme defect and the clinical phenotype or merely a biochemical abnormality. Here we present a patient identified in the course of selective screening for inborn errors of metabolism (IEM). The patient was diagnosed with autistic syndrome and admitted to the Children's Memorial Health Institute (CMHI) for metabolic evaluation. Organic acid analysis using gas chromatography-mass spectrometry (GC-MS) revealed increased urinary excretion of several N-acetylated amino acids, including the derivatives of methionine, glutamic acid, alanine, glycine, leucine, isoleucine, and valine. In Epstein-Barr virus (EBV)-transformed lymphoblasts, ACY1 activity was deficient. The mutation analysis showed a homozygous c.1057C>T transition, predicting a p.Arg353Cys substitution. Both parents were heterozygous for the mutation and had normal results in the organic acid analysis using GC-MS. This article reports the findings of an ACY1-deficient patient presenting with autistic features.
Mutations in SELENBP1, encoding a novel human methanethiol oxidase, cause extraoral halitosis
(2017)
Selenium-binding protein 1 (SELENBP1) has been associated with several cancers, although its exact role is unknown. We show that SELENBP1 is a methanethiol oxidase (MTO), related to the MTO in methylotrophic bacteria, that converts methanethiol to H2O2, formaldehyde, and H2S, an activity not previously known to exist in humans. We identified mutations in SELENBP1 in five patients with cabbage-like breath odor. The malodor was attributable to high levels of methanethiol and dimethylsulfide, the main odorous compounds in their breath. Elevated urinary excretion of dimethylsulfoxide was associated with MTO deficiency. Patient fibroblasts had low SELENBP1 protein levels and were deficient in MTO enzymatic activity; these effects were reversed by lentivirus-mediated expression of wild-type SELENBP1. Selenbp1-knockout mice showed biochemical characteristics similar to those in humans. Our data reveal a potentially frequent inborn error of metabolism that results from MTO deficiency and leads to a malodor syndrome.