Refine
Departments, institutes and facilities
Document Type
- Conference Object (6)
- Article (4)
Language
- English (10)
Keywords
- instrumentation: spectrographs (2)
- techniques: spectroscopic (2)
- Equipment and services (1)
- Fourier transforms (1)
- Heterodyning (1)
- Optics (1)
- Oscillators (1)
- Radio-frequency (1)
- Receivers (1)
- SOFIA (GREAT) (1)
To make best use of the exceptional good weather conditions at Chajnantor we developed CHAMP+, a two time seven pixel dual-color heterodyne array for operation in the 350 and 450 µm atmospheric windows. CHAMP+ uses state-of-the-art SIS-mixers provided by our collaborators at SRON. To maximize its performance, optical single sideband filter are implemented for each of the two subarrays, and most of the optics is operated cold (20K) to minimize noise contributions. The instrument can be operated remotely, under full computer control of all components. The autocorrelator backend, currently in operation with 2 × 1GHz of bandwidth for each of the 14 heterodyne channels, will be upgraded by a new technologies FFT spectrometer array in mid 2008. CHAMP+ has been commissioned successfully in late 2007. We will review the performance of the instrument "in the field," and present its characteristics as measured on-sky.
We present a new multi-pixel high resolution (R ≳ 107) spectrometer for the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA). The receiver uses 2 × 7-pixel subarrays in orthogonal polarization, each in an hexagonal array around a central pixel. We present the first results for this new instrument after commissioning campaigns in May and December 2015 and after science observations performed in May 2016. The receiver is designed to ultimately cover the full 1.8−2.5 THz frequency range but in its first implementation, the observing range was limited to observations of the [CII] line at 1.9 THz in 2015 and extended to 1.83−2.07 THz in 2016. The instrument sensitivities are state-of-the-art and the first scientific observations performed shortly after the commissioning confirm that the time efficiency for large scale imaging is improved by more than an order of magnitude as compared to single pixel receivers. An example of large scale mapping around the Horsehead Nebula is presented here illustrating this improvement. The array has been added to SOFIA’s instrument suite already for ongoing observing cycle 4.
We present the performance of the upGREAT heterodyne array receivers on the SOFIA telescope after several years of operations. This instrument is a multi-pixel high resolution (R≳107) spectrometer for the Stratospheric Observatory for Far-Infrared Astronomy (SOFIA). The receivers use 7-pixel subarrays configured in a hexagonal layout around a central pixel. The low frequency array receiver (LFA) has 2×7 pixels (dual polarization), and presently covers the 1.83–2.07THz frequency range, which allows to observe the [CII] and [OI] lines at 158μm and 145μm wavelengths. The high frequency array (HFA) covers the [OI] line at 63μm and is equipped with one polarization at the moment (7 pixels, which can be upgraded in the near future with a second polarization array). The 4.7THz array has successfully flown using two separate quantum-cascade laser local oscillators from two different groups. NASA completed the development, integration and testing of a dual-channel closed-cycle cryocooler system, with two independently operable He compressors, aboard SOFIA in early 2017 and since then, both arrays can be operated in parallel using a frequency separating dichroic mirror. This configuration is now the prime GREAT configuration and has been added to SOFIA’s instrument suite since observing cycle 6.
We review the development of our digital broadband Fast Fourier Transform Spectrometers (FFTS). In just a few years, FFTS back-ends - optimized for a wide range of radio astronomical applications - have become a new standard for heterodyne receivers, particularly in the mm and sub-mm wavelength range. They offer high instantaneous bandwidths with many thousands spectral channels on a small electronic board (100 x 160 mm). Our FFT spectrometer make use of the latest versions of GHz analog-to-digital converters (ADC) and the most complex field programmable gate array (FPGA) chips commercially available today. These state-of-the-art chips have made possible to build digital spectrometers with instantaneous bandwidths up to 1.8 GHz and 8192 spectral channels.
We present our second generation of broadband Fast Fourier Transform Spectrometer (FFTS), optimized for a wide range of radio astronomical applications. The new digitizer and analyzer boards make use of the latest versions of GHz analogto-digital converters and the most complex field programmable gate array chips commercially available today. These state-ofthe-art chips have made possible to build digital spectrometers with instantaneous bandwidths up to 1.8 GHz and 8192 spectral channels.
Superconducting heterodyne receiver has played a vital role in the high resolution spectroscopy applications for astronomy and atmospheric research up to 2THz. NbN hot electron bolometer (HEB) mixer, as the most sensitive mixer above 1.5THz, has been used in the Herschel space telescope for 1.4-1.9THz and has also shown an ultra-high sensitivity up to 5.3THz. Combined a HEB mixer with a novel THz quantum cascade laser (QCL) as local oscillator (LO), such an all solid-state heterodyne receiver provides the technology which can be used for any balloon-, air- and space-borne heterodyne instruments above 2THz. Here we report the first high-resolution heterodyne spectroscopy measurement using a gas cell and using such a HEB-QCL receiver. The receiver employs a 2.9THz metal-metal waveguide QCL as LO and a NbN HEB as a mixer. By using a gas cell filled with methanol (CH3OH) gas in combination with hot/cold blackbody loads as signal source, we successfully recorded the methanol emission line around 2.918THz. Spectral lines at different pressures and also different frequency of the QCL are studied.