Refine
H-BRS Bibliography
- yes (4)
Departments, institutes and facilities
Document Type
- Conference Object (2)
- Report (2)
Language
- English (4)
Keywords
Neuromorphic computing aims to mimic the computational principles of the brain in silico and has motivated research into event-based vision and spiking neural networks (SNNs). Event cameras (ECs) capture local, independent changes in brightness, and offer superior power consumption, response latencies, and dynamic ranges compared to frame-based cameras. SNNs replicate neuronal dynamics observed in biological neurons and propagate information in sparse sequences of ”spikes”. Apart from biological fidelity, SNNs have demonstrated potential as an alternative to conventional artificial neural networks (ANNs), such as in reducing energy expenditure and inference time in visual classification. Although potentially beneficial for robotics, the novel event-driven and spike-based paradigms remain scarcely explored outside the domain of aerial robots.
To investigate the utility of brain-inspired sensing and data processing in a robotics application, we developed a neuromorphic approach to real-time, online obstacle avoidance on a manipulator with an onboard camera. Our approach adapts high-level trajectory plans with reactive maneuvers by processing emulated event data in a convolutional SNN, decoding neural activations into avoidance motions, and adjusting plans in a dynamic motion primitive formulation. We conducted simulated and real experiments with a Kinova Gen3 arm performing simple reaching tasks involving static and dynamic obstacles. Our implementation was systematically tuned, validated, and tested in sets of distinct task scenarios, and compared to a non-adaptive baseline through formalized quantitative metrics and qualitative criteria.
The neuromorphic implementation facilitated reliable avoidance of imminent collisions in most scenarios, with 84% and 92% median success rates in simulated and real experiments, where the baseline consistently failed. Adapted trajectories were qualitatively similar to baseline trajectories, indicating low impacts on safety, predictability and smoothness criteria. Among notable properties of the SNN were the correlation of processing time with the magnitude of perceived motions (captured in events) and robustness to different event emulation methods. Preliminary tests with a DAVIS346 EC showed similar performance, validating our experimental event emulation method. These results motivate future efforts to incorporate SNN learning, utilize neuromorphic processors, and target other robot tasks to further explore this approach.
An essential measure of autonomy in assistive service robots is adaptivity to the various contexts of human-oriented tasks, which are subject to subtle variations in task parameters that determine optimal behaviour. In this work, we propose an apprenticeship learning approach to achieving context-aware action generalization on the task of robot-to-human object hand-over. The procedure combines learning from demonstration and reinforcement learning: a robot first imitates a demonstrator’s execution of the task and then learns contextualized variants of the demonstrated action through experience. We use dynamic movement primitives as compact motion representations, and a model-based C-REPS algorithm for learning policies that can specify hand-over position, conditioned on context variables. Policies are learned using simulated task executions, before transferring them to the robot and evaluating emergent behaviours. We additionally conduct a user study involving participants assuming different postures and receiving an object from a robot, which executes hand-overs by either imitating a demonstrated motion, or adapting its motion to hand-over positions suggested by the learned policy. The results confirm the hypothesized improvements in the robot’s perceived behaviour when it is context-aware and adaptive, and provide useful insights that can inform future developments.
An essential measure of autonomy in service robots designed to assist humans is adaptivity to the various contexts of human-oriented tasks. These robots may have to frequently execute the same action, but subject to subtle variations in task parameters that determine optimal behaviour. Such actions are traditionally executed by robots using pre-determined, generic motions, but a better approach could utilize robot arm maneuverability to learn and execute different trajectories that work best in each context.
In this project, we explore a robot skill acquisition procedure that allows incorporating contextual knowledge, adjusting executions according to context, and improvement through experience, as a step towards more adaptive service robots. We propose an apprenticeship learning approach to achieving context-aware action generalisation on the task of robot-to-human object hand-over. The procedure combines learning from demonstration, with which a robot learns to imitate a demonstrator’s execution of the task, and a reinforcement learning strategy, which enables subsequent experiential learning of contextualized policies, guided by information about context that is integrated into the learning process. By extending the initial, static hand-over policy to a contextually adaptive one, the robot derives and executes variants of the demonstrated action that most appropriately suit the current context. We use dynamic movement primitives (DMPs) as compact motion representations, and a model-based Contextual Relative Entropy Policy Search (C-REPS) algorithm for learning policies that can specify hand-over position, trajectory shape, and execution speed, conditioned on context variables. Policies are learned using simulated task executions, before transferring them to the robot and evaluating emergent behaviours.
We demonstrate the algorithm’s ability to learn context-dependent hand-over positions, and new trajectories, guided by suitable reward functions, and show that the current DMP implementation limits learning context-dependent execution speeds. We additionally conduct a user study involving participants assuming different postures and receiving an object from the robot, which executes hand-overs by either exclusively imitating a demonstrated motion, or selecting hand-over positions based on learned contextual policies and adapting its motion accordingly. The results confirm the hypothesized improvements in the robot’s perceived behaviour when it is context-aware and adaptive, and provide useful insights that can inform future developments.
When a robotic agent experiences a failure while acting in the world, it should be possible to discover why that failure has occurred, namely to diagnose the failure. In this paper, we argue that the diagnosability of robot actions, at least in a classical sense, is a feature that cannot be taken for granted since it strongly depends on the underlying action representation. We specifically define criteria that determine the diagnosability of robot actions. The diagnosability question is then analysed in the context of a handle manipulation action, such that we discuss two different representations of the action – a composite policy with a learned success model for the action parameters, and a neural network-based monolithic policy – both of which exist on different sides of the diagnosability spectrum. Through this comparison, we conclude that composite actions are more suited to explicit diagnosis, but representations with less prior knowledge are more flexible. This suggests that model learning may provide balance between flexibility and diagnosability; however, data-driven diagnosis methods also need to be enhanced in order to deal with the complexity of modern robots.