Refine
Departments, institutes and facilities
Document Type
- Part of a Book (1)
- Conference Object (1)
- Doctoral Thesis (1)
- Master's Thesis (1)
Language
- English (4)
Keywords
- Robotics (1)
- Robotik (1)
- Semantic web (1)
The research of autonomous artificial agents that adapt to and survive in changing, possibly hostile environments, has gained momentum in recent years. Many of such agents incorporate mechanisms to learn and acquire new knowledge from its environment, a feature that becomes fundamental to enable the desired adaptation, and account for the challenges that the environment poses. The issue of how to trigger such learning, however, has not been as thoroughly studied as its significance suggest. The solution explored is based on the use of surprise (the reaction to unexpected events), as the mechanism that triggers learning. This thesis introduces a computational model of surprise that enables the robotic learner to experience surprise and start the acquisition of knowledge to explain it. A measure of surprise that combines elements from information and probability theory, is presented. Such measure offers a response to surprising situations faced by the robot, that is proportional to the degree of unexpectedness of such event. The concepts of short- and long-term memory are investigated as factors that influence the resulting surprise. Short-term memory enables the robot to habituate to new, repeated surprises, and to “forget” about old ones, allowing them to become surprising again. Long-term memory contains knowledge that is known a priori or that has been previously learned by the robot. Such knowledge influences the surprise mechanism, by applying a subsumption principle: if the available knowledge is able to explain the surprising event, suppress any trigger of surprise. The computational model of robotic surprise has been successfully applied to the domain of a robotic learner, specifically one that learns by experimentation. A brief introduction to the context of such application is provided, as well as a discussion on related issues like the relationship of the surprise mechanism with other components of the robot conceptual architecture, the challenges presented by the specific learning paradigm used, and other components of the motivational structure of the agent.
In Artificial Intelligence, numerous learning paradigms have been developed over the past decades. In most cases of embodied and situated agents, the learning goal for the artificial agent is to „map“ or classify the environment and the objects therein [1, 2], in order to improve navigation or the execution of some other domain-specific task. Dynamic environments and changing tasks still pose a major challenge for robotic learning in real-world domains. In order to intelligently adapt its task strategies, the agent needs cognitive abilities to more deeply understand its environment and the effects of its actions. In order to approach this challenge within an open-ended learning loop, the XPERO project (http://www.xpero.org) explores the paradigm of Learning by Experimentation to increase the robot's conceptual world knowledge autonomously. In this setting, tasks which are selected by an actionselection mechanism are interrupted by a learning loop in those cases where the robot identifies learning as necessary for solving a task or for explaining observations. It is important to note that our approach targets unsupervised learning, since there is no oracle available to the agent, nor does it have access to a reward function providing direct feedback on the quality of its learned model, as e.g. in reinforcement learning approaches. In the following sections we present our framework for integrating autonomous robotic experimentation into such a learning loop. In section 1 we explain the different modules for stimulation and design of experiments and their interaction. In section 2 we describe our implementation of these modules and how we applied them to a real world scenario to gather target-oriented data for learning conceptual knowledge. There we also indicate how the goaloriented data generation enables machine learning algorithms to revise the failed prediction model.
The topic of this PhD project is in the context of cross-reality, a term that defines mixed reality environments that tunnel dense real-world data acquired through the use of sensor/actuator device networks into virtual worlds. It is part of the ongoing academia and industry efforts to achieve interoperability between virtual and real devices and services.