Refine
H-BRS Bibliography
- yes (4)
Departments, institutes and facilities
Document Type
- Article (4)
Language
- English (4)
Has Fulltext
- yes (4)
Keywords
- GMX1778 (1)
- STF-31 (1)
- WZB117 (1)
- breast carcinoma (1)
- cancer biomarker (1)
- cell migration (1)
- fasentin (1)
- glucose uptake inhibitor (1)
- invasion (1)
- molecular pathology (1)
Background: the potency of drugs that interfere with glucose metabolism, i.e., glucose transporters (GLUT) and nicotinamide phosphoribosyltransferase (NAMPT) was analyzed in neuroendocrine tumor (NET, BON-1, and QPG-1 cells) and small cell lung cancer (SCLC, GLC-2, and GLC-36 cells) tumor cell lines. (2) Methods: the proliferation and survival rate of tumor cells was significantly affected by the GLUT-inhibitors fasentin and WZB1127, as well as by the NAMPT inhibitors GMX1778 and STF-31. (3) Results: none of the NET cell lines that were treated with NAMPT inhibitors could be rescued with nicotinic acid (usage of the Preiss–Handler salvage pathway), although NAPRT expression could be detected in two NET cell lines. We finally analyzed the specificity of GMX1778 and STF-31 in NET cells in glucose uptake experiments. As previously shown for STF-31 in a panel NET-excluding tumor cell lines, both drugs specifically inhibited glucose uptake at higher (50 μM), but not at lower (5 μM) concentrations. (4) Conclusions: our data suggest that GLUT and especially NAMPT inhibitors are potential candidates for the treatment of NET tumors.
Background: Staurosporine-dependent single and collective cell migration patterns of breast carcinoma cells MDA-MB-231, MCF-7, and SK-BR-3 were analysed to characterise the presence of drug-dependent migration promoting and inhibiting yin-yang effects. Methods: Migration patterns of various breast cancer cells after staurosporine treatment were investigated using Western blot, cell toxicity assays, single and collective cell migration assays, and video time-lapse. Statistical analyses were performed with Kruskal–Wallis and Fligner–Killeen tests. Results: Application of staurosporine induced the migration of single MCF-7 cells but inhibited collective cell migration. With the exception of low-density SK-BR-3 cells, staurosporine induced the generation of immobile flattened giant cells. Video time-lapse analysis revealed that within the borderline of cell collectives, staurosporine reduced the velocity of individual MDA-MB-231 and SK-BR-3, but not of MCF-7 cells. In individual MCF-7 cells, mainly the directionality of migration became disturbed, which led to an increased migration rate parallel to the borderline, and hereby to an inhibition of the migration of the cell collective as a total. Moreover, the application of staurosporine led to a transient activation of ERK1/2 in all cell lines. Conclusion: Dependent on the context (single versus collective cells), a drug may induce opposite effects in the same cell line.
In thyroid carcinoma cells, the soluble βgalactosidespecific lectin, galectin3, is extra and intracellularly expressed and plays a significant role in thyroid cancer diagnosis. The functional relevance of this molecule, particularly in its extracellular environment however, warrants further elucidation. To gain insight into this topic, the present study characterized principal functional properties of galectin3 in 3 commonly used thyroid carcinoma cell lines (BCPAP, Cal62 and FTC133) that express the molecule intra and extracellulary. Cellintrinsic galectin3 harbors a functional carbohydrate recognition domain as determined by affinity purification. Moreover, cell surface expressed galectin3 can be partially removed by treatment with lactose or asialofetuin, but not with sucrose. Thyroid carcinoma cells adhere to substratebound galectin3 in a βgalactosidespecific manner, whereby only cell adhesion, but not cell migration is promoted. Thus, thyroid tumor cells harbor functional active galectin3 that, inter alia, specifically interacts with cell surfaceexpressed molecular ligands in a βgalactosidedependent manner, whereby the molecule can at least interfere with cell adhesion. The modulation of galectin3 expression level or its ligands in such tumor cells could be of therapeutic interest and needs further experimental clarification.
Our study shows ZP2 to be a new biomarker for diagnosis, best used in combination with other low abundant genes in colon cancer. Furthermore, ZP2 promotes cell proliferation via the ERK1/2-cyclinD1-signaling pathway. We demonstrate that ZP2 mRNA is expressed in a low-abundant manner with high specificity in subsets of cancer cell lines representing different cancer subtypes and also in a significant proportion of primary colon cancers. The potential benefit of ZP2 as a biomarker is discussed. In the second part of our study, the function of ZP2 in cancerogenesis has been analyzed. Since ZP2 shows an enhanced transcript level in colon cancer cells, siRNA experiments have been performed to verify the potential role of ZP2 in cell proliferation. Based on these data, ZP2 might serve as a new target molecule for cancer diagnosis and treatment in respective cancer types such as colon cancer.