Refine
H-BRS Bibliography
- yes (3)
Departments, institutes and facilities
Document Type
- Article (1)
- Conference Object (1)
- Report (1)
Keywords
- OCT (1)
- PAD (1)
- authentication (1)
- biometrics (1)
- fingerprint (1)
- holography (1)
- human-robot collaboration (1)
- machine learning (1)
- optical coherence tomography (1)
- presentation attack detection (1)
Entering the work envelope of an industrial robot can lead to severe injury from collisions with moving parts of the system. Conventional safety mechanisms therefore mostly restrict access to the robot using physical barriers such as walls and fences or non-contact protective devices including light curtains and laser scanners. As none of these mechanisms applies to human-robot-collaboration (HRC), a concept in which human and machine complement one another by working hand in hand, there is a rising need for safe and reliable detection of human body parts amidst background clutter. For this application camera-based systems are typically well suited. Still, safety concerns remain, owing to possible detection failures caused by environmental occlusion, extraneous light or other adverse imaging conditions. While ultrasonic proximity sensing can provide physical diversity to the system, it does not yet allow to reliably distinguish relevant objects from background objects.This work investigates a new approach to detecting relevant objects and human body parts based on acoustic holography. The approach is experimentally validated using a low-cost application-specific ultrasonic sensor system created from micro-electromechanical systems (MEMS). The presented results show that this system far outperforms conventional proximity sensors in terms of lateral imaging resolution and thus allows for more intelligent muting processes without compromising the safety of people working close to the robot. Based upon this work, a next step could be the development of a multimodal sensor systems to safeguard workers who collaborate with robots using the described ultrasonic sensor system.
Robust Identification and Segmentation of the Outer Skin Layers in Volumetric Fingerprint Data
(2022)
Despite the long history of fingerprint biometrics and its use to authenticate individuals, there are still some unsolved challenges with fingerprint acquisition and presentation attack detection (PAD). Currently available commercial fingerprint capture devices struggle with non-ideal skin conditions, including soft skin in infants. They are also susceptible to presentation attacks, which limits their applicability in unsupervised scenarios such as border control. Optical coherence tomography (OCT) could be a promising solution to these problems. In this work, we propose a digital signal processing chain for segmenting two complementary fingerprints from the same OCT fingertip scan: One fingerprint is captured as usual from the epidermis (“outer fingerprint”), whereas the other is taken from inside the skin, at the junction between the epidermis and the underlying dermis (“inner fingerprint”). The resulting 3D fingerprints are then converted to a conventional 2D grayscale representation from which minutiae points can be extracted using existing methods. Our approach is device-independent and has been proven to work with two different time domain OCT scanners. Using efficient GPGPU computing, it took less than a second to process an entire gigabyte of OCT data. To validate the results, we captured OCT fingerprints of 130 individual fingers and compared them with conventional 2D fingerprints of the same fingers. We found that both the outer and inner OCT fingerprints were backward compatible with conventional 2D fingerprints, with the inner fingerprint generally being less damaged and, therefore, more reliable.