Refine
H-BRS Bibliography
- yes (4)
Departments, institutes and facilities
Document Type
- Article (3)
- Conference Object (1)
Language
- English (4)
Keywords
- Chemometrics (2)
- SERS (2)
- AuNPs (1)
- Classification (1)
- Discriminant analysis (1)
- Meat-associated Microorganisms (1)
- Pathogenic Bacteria (1)
- Principal component analysis (1)
- Raman Spectroscopy (1)
- Raman spectroscopy (1)
Raman-microspectroscopy was used for the non-destructive characterization and differentiation of six different meat spoilage associated microorganisms, namely Brochothrix thermosphacta DSM 20171, Micrococcus luteus, Pseudomonas fluorescens DSM 4358, Escherichia coli Top10 and K12 and Pseudomonas fluorescens DSM 50090. To evaluate and classify the Raman-spectroscopic data at species and strain level an adequate preprocessing and subsequent principal component analysis was used. The same procedure was extended to an independent test data set, which could be successfully assigned to the correct bacterial species and even to the right strain. The evaluation was not only successful in differentiation of gram-positive and gram-negative bacteria but also the discrimination between the different bacterial species and strains was possible. This means that the training data set, the preprocessing method and the evaluation of the data lead to a robust principal component analysis. Even the correct assignment of unknown samples is possible. The results show that Raman-microspectroscopy in combination with an appropriate chemometric treatment can be a good tool for a rapid examination and classification of microbial cultures.
Hydrophilic surface-enhanced Raman spectroscopy (SERS) substrates were prepared by a combination of TiO2-coatings of aluminium plates through a direct titanium tetraisopropoxide (TTIP) coating and drop coated by synthesised gold nanoparticles (AuNPs). Differences between the wettability of the untreated substrates, the slowly dried Ti(OH)4 substrates and calcinated as well as plasma treated TiO2 substrates were analysed by water contact angle (WCA) measurements. The hydrophilic behaviour of the developed substrates helped to improve the distribution of the AuNPs, which reflects in overall higher lateral SERS enhancement. Surface enhancement of the substrates was tested with target molecule rhodamine 6G (R6G) and a fibre-coupled 638 nm Raman spectrometer. Additionally, the morphology of the substrates was characterised using scanning electron microscopy (SEM) and Raman microscopy. The studies showed a reduced influence of the coffee ring effect on the particle distribution, resulting in a more broadly distributed edge region, which increased the spatial reproducibility of the measured SERS signal in the surface-enhanced Raman mapping measurements on mm scale.
Surface-enhanced Raman spectroscopy (SERS) with subsequent chemometric evaluation was performed for the rapid and non-destructive differentiation of seven important meat-associated microorganisms, namely Brochothrix thermosphacta DSM 20171, Pseudomonas fluorescens DSM 4358, Salmonella enterica subsp. enterica sv. Enteritidis DSM 14221, Listeria monocytogenes DSM 19094, Micrococcus luteus DSM 20030, Escherichia coli HB101 and Bacillus thuringiensis sv. israelensis DSM 5724. A simple method for collecting spectra from commercial paper-based SERS substrates without any laborious pre-treatments was used. In order to prepare the spectroscopic data for classification at genera level with a subsequent chemometric evaluation consisting of principal component analysis and discriminant analysis, a pre-processing method with spike correction and sum normalisation was performed. Because of the spike correction rather than exclusion, and therefore the use of a balanced data set, the multivariate analysis of the data is significantly resilient and meaningful. The analysis showed that the differentiation of meat-associated microorganisms and thereby the detection of important meat-related pathogenic bacteria was successful on genera level and a cross-validation as well as a classification of ungrouped data showed promising results, with 99.5 % and 97.5 %, respectively.