Refine
H-BRS Bibliography
- yes (8)
Departments, institutes and facilities
Document Type
- Conference Object (4)
- Article (3)
- Report (1)
Keywords
- Domestic service robots (1)
- Ego-Motion Estimation (1)
- Human robot interaction (1)
- Kartographie (1)
- Navigation (1)
- OCU (1)
- Robotersteuerung (1)
- Robotik (1)
- Semantic scene understanding (1)
- SensorFusion (1)
Autonomous mobile robots need internal environment representations or models of their environment in order to act in a goal-directed manner, plan actions and navigate effectively. Especially in those situations where a robot can not be provided with a manually constructed model or in environments that change over time, the robot needs to possess the ability of autonomously constructing models and maintaining these models on its own. To construct a model of an environment multiple sensor readings have to be acquired and integrated into a single representation. Where the robot has to take these sensor readings is determined by an exploration strategy. The strategy allows the robot to sense all environmental structures and to construct a complete model of its workspace. Given a complete environment model, the task of inspection is to guide the robot to all modeled environmental structures in order to detect changes and to update the model if necessary. Informally stated, exploration and inspection provide the means for acquiring as much information as possible by the robot itself. Both exploration and inspection are highly integrated problems. In addition to the according strategies, they require for several abilities of a robotic system and comprise various problems from the field of mobile robotics including Simultaneous localization and Mapping (SLAM), motion planning and control as well as reliable collision avoidance. The goal of this thesis is to develop and implement a complete system and a set of algorithms for robotic exploration and inspection. That is, instead of focussing on specific strategies, robotic exploration and inspection are addressed as the integrated problems that they are. Given the set of algorithms a real mobile service robot has to be able to autonomously explore its workspace, construct a model of its workspace and use this model in subsequent tasks e.g. for navigating in the workspace or inspecting the workspace itself. The algorithms need to be reliable, robust against environment dynamics and internal failures and applicable online in real-time on a real mobile robot. The resulting system should allow a mobile service robot to navigate effectively and reliably in a domestic environment and avoid all kinds of collisions. In the context of mobile robotics, domestic environments combine the characteristics of being cluttered, dynamic and populated by humans and domestic animals. SLAM is going to be addressed in terms of incremental range image registration which provides efficient means to construct internal environment representations online while moving through the environment. Two registration algorithms are presented that can be applied on two-dimensional and three-dimensional data together with several extensions and an incremental registration procedure. The algorithms are used to construct two different types of environment representations, memory-efficient sparse points and probabilistic reflection maps. For effective navigation in the robot’s workspace, different path planning algorithms are going to be presented for the two types of environment representations. Furthermore, two motion controllers will be described that allow a mobile robot to follow planned paths and to approach a target position and orientation. Finally this thesis will present different exploration and inspection strategies that use the aforementioned algorithms to move the robot to previously unexplored or uninspected terrain and update the internal environment representations accordingly. These strategies are augmented with algorithms for detecting changes in the environment and for segmenting internal models into individual rooms. The resulting system performed very successfully in the 2008 and 2009 RoboCup@Home competitions.
This paper introduces our robotic system named UGAV (Unmanned Ground-Air Vehicle) consisting of two semi-autonomous robot platforms, an Unmanned Ground Vehicle (UGV) and an Unmanned Aerial Vehicles (UAV). The paper focuses on three topics of the inspection with the combined UGV and UAV: (A) teleoperated control by means of cell or smart phones with a new concept of automatic configuration of the smart phone based on a RKI-XML description of the vehicles control capabilities, (B) the camera and vision system with the focus to real time feature extraction e.g. for the tracking of the UAV and (C) the architecture and hardware of the UAV.
This paper presents an approach to estimate theego-motion of a robot while moving. The employed sensor is aTime-of-Flight (ToF) camera, the SR3000 from Mesa Imaging.ToF cameras provide depth and reflectance data of the scene athigh frame rates.The proposed method utilizes the coherence of depth andreflectance data of ToF cameras by detecting image features onreflectance data and estimating the motion on depth data. Themotion estimate of the camera is fused with inertial measure-ments to gain higher accuracy and robustness.The result of the algorithm is benchmarked against referenceposes determined by matching accurate 2D range scans. Theevaluation shows that fusing the pose estimate with the datafromthe IMU improves the accuracy and robustness of the motionestimate against distorted measurements from the sensor.