Refine
H-BRS Bibliography
- yes (4)
Departments, institutes and facilities
Document Type
- Article (1)
- Bachelor Thesis (1)
- Conference Object (1)
- Dataset (1)
Keywords
Der Befall mit schädlichen Pilzen führt im Weinbau zu Ertragseinbusen sowie zu ökonomischen und ökologischen Belastungen durch den präventiven Einsatz von Fungiziden. Diese könnten durch eine Früherkennung des Befalls verringert werden. Das Projekt vinoLAS® soll die kontaktlose Früherkennung des falschen Mehltaus, einer wichtigen schädlichen Pilzart im Weinbau, ermöglichen. Dabei sollen Methoden der laserinduzierten Fluoreszenzspektroskopie verwendet werden. In dieser Arbeit wird ein Detektionsmodul zur Analyse des laserinduziertem Fluoreszenzlichts in vier spektralen Kanälen entwickelt.
Die Anforderungen an das Detektionsmodul werden festgelegt und die Entwicklung erläutert. Das System lässt sich in einen optischen und elektronischen Aufbau teilen. Das Verhalten des elektronische Aufbaus wird anhand umfangreicher Messungen bestimmt und mit den Anforderungen verglichen. Es wird mit dem optischen Aufbau zu einem Gesamtsystem kombiniert. Mit diesem werden Messungen im vinoLAS® Laboraufbau durchgeführt, welche zur Verifikation mit einer Referenzmessung verglichen werden.
Die Messungen zum elektronischen Aufbau zeigen, dass alle gestellten Anforderungen erfüllt und teilweise übertroffen werden. Das entstandene Gated-Integrator System ist mit einem, deutlich teureren, kommerziellen Gated-Integrator vergleichbar, bietet dabei aber doppelt so viele Kanäle und ein 44% geringeres Rauschen. Mit der Diskussion der Messdaten werden außerdem Ansätze vorgestellt, die eine kostengünstige weiter Verbesserung des elektronischen Systems ermöglichen.
Die Messungen mit dem Gesamtsystem zeigen eine qualitative Übereinstimmung mit der Referenzmessung, es sind jedoch noch quantitative Abweichungen vorhanden, die weiter untersucht werden müssen. Außerdem zeigt sich, dass die Qualität der Messdaten durch eine Schwankung der Laserfrequenz stark eingeschränkt wird. Eine leicht implementierbare und kostengünstige Lösung für dieses Problem wird jedoch vorgestellt.
Nach Umsetzung der beiden Verbesserungsvorschläge kann das System in den vinoLAS® Aufbau integriert werden und so eine kontaktlose Früherkennung von falschem Mehltau in Weinreben ermöglichen.
Aktive 3D-Messsysteme sind für präzise 3D-Messungen in Bereichen wie der Logistik, der industriellen Sicherheit und der biometrischen Authentifizierung zunehmend relevant. Im Gegensatz zu passiven Systemen verfügen sie über eine eigene örtlich und/oder zeitlich modulierte Beleuchtung. Dadurch können sie unabhängig vom Umgebungslicht Messungen durchführen.
A Fourier scatterometry setup is evaluated to recover the key parameters of optical phase gratings. Based on these parameters, systematic errors in the printing process of two-photon polymerization (TPP) gray-scale lithography three-dimensional printers can be compensated, namely tilt and curvature deviations. The proposed setup is significantly cheaper than a confocal microscope, which is usually used to determine calibration parameters for compensation of the TPP printing process. The grating parameters recovered this way are compared to those obtained with a confocal microscope. A clear correlation between confocal and scatterometric measurements is first shown for structures containing either tilt or curvature. The correlation is also shown for structures containing a mixture of tilt and curvature errors (squared Pearson coefficient r2 = 0.92). This compensation method is demonstrated on a TPP printer: a diffractive optical element printed with correction parameters obtained from Fourier scatterometry shows a significant reduction in noise as compared to the uncompensated system. This verifies the successful reduction of tilt and curvature errors. Further improvements of the method are proposed, which may enable the measurements to become more precise than confocal measurements in the future, since scatterometry is not affected by the diffraction limit.
A Fourier scatterometry setup is evaluated to recover the key parameters of optical phase gratings. Based on these parameters, systematic errors in the printing process of two photon polymerization (TPP) gray-scale lithography 3d printers can be compensated, namely tilt and curvature deviations. The proposed setup is significantly cheaper than a confocal microscope, which is usually used to determine calibrations parameters for compensation of the TPP printing process. The grating parameters recovered this way are compared to those obtained with a confocal microscope. A clear correlation between confocal and scatterometric measurements is first shown for structures containing either tilt or curvature. The correlation is also shown for structures containing a mixture of tilt and curvature errors (squared Pearson coefficient $r^2$ = 0.92). This new compensation method is demonstrated on a TPP printer: A diffractive optical element (DOE) printed with correction parameters obtained from Fourier scatterometry shows a significant reduction in noise as compared to the uncompensated system. This verifies the successful reduction of tilt and curvature errors. Further improvements of the method are proposed, which may enable the measurements to become more precise than confocal measurements in the future, since scatterometry is not affected by the diffraction limit.