Refine
Departments, institutes and facilities
Document Type
- Conference Object (46)
- Article (27)
- Book (monograph, edited volume) (2)
- Contribution to a Periodical (1)
Year of publication
Keywords
- 3D user interface (7)
- Virtual Reality (7)
- virtual reality (7)
- Augmented Reality (4)
- haptics (4)
- Perception (3)
- 3D user interfaces (2)
- Augmented reality (2)
- Awe (2)
- Motion Sickness (2)
The study of locomotion in virtual environments is a diverse and rewarding research area. Yet, creating effective and intuitive locomotion techniques is challenging, especially when users cannot move around freely. While using handheld input devices for navigation may often be good enough, it does not match our natural experience of motion in the real world. Frequently, there are strong arguments for supporting body-centered self-motion cues as they may improve orientation and spatial judgments, and reduce motion sickness. Yet, how these cues can be introduced while the user is not moving around physically is not well understood. Actuated solutions such as motion platforms can be an option, but they are expensive and difficult to maintain. Alternatively, within this article we focus on the effect of upper-body tilt while users are seated, as previous work has indicated positive effects on self-motion perception. We report on two studies that investigated the effects of static and dynamic upper body leaning on perceived distances traveled and self-motion perception (vection). Static leaning (i.e., keeping a constant forward torso inclination) had a positive effect on self-motion, while dynamic torso leaning showed mixed results. We discuss these results and identify further steps necessary to design improved embodied locomotion control techniques that do not require actuated motion platforms.
Human beings spend much time under the influence of artificial lighting. Often, it is beneficial to adapt lighting to the task, as well as the user’s mental and physical constitution and well-being. This formulates new requirements for lighting - human-centric lighting - and drives a need for new light control methods in interior spaces. In this paper we present a holistic system that provides a novel approach to human-centric lighting by introducing simulation methods into interactive light control, to adapt the lighting based on the user's needs. We look at a simulation and evaluation platform that uses interactive stochastic spectral rendering methods to simulate light sources, allowing for their interactive adjustment and adaption.
Advances in computer graphics enable us to create digital images of astonishing complexity and realism. However, processing resources are still a limiting factor. Hence, many costly but desirable aspects of realism are often not accounted for, including global illumination, accurate depth of field and motion blur, spectral effects, etc. especially in real‐time rendering. At the same time, there is a strong trend towards more pixels per display due to larger displays, higher pixel densities or larger fields of view. Further observable trends in current display technology include more bits per pixel (high dynamic range, wider color gamut/fidelity), increasing refresh rates (better motion depiction), and an increasing number of displayed views per pixel (stereo, multi‐view, all the way to holographic or lightfield displays). These developments cause significant unsolved technical challenges due to aspects such as limited compute power and bandwidth. Fortunately, the human visual system has certain limitations, which mean that providing the highest possible visual quality is not always necessary. In this report, we present the key research and models that exploit the limitations of perception to tackle visual quality and workload alike. Moreover, we present the open problems and promising future research targeting the question of how we can minimize the effort to compute and display only the necessary pixels while still offering a user full visual experience.
From video games to mobile augmented reality, 3D interaction is everywhere. But simply choosing to use 3D input or 3D displays isn't enough: 3D user interfaces (3D UIs) must be carefully designed for optimal user experience. 3D User Interfaces: Theory and Practice, Second Edition is today's most comprehensive primary reference to building outstanding 3D UIs. Four pioneers in 3D user interface research and practice have extensively expanded and updated this book, making it today's definitive source for all things related to state-of-the-art 3D interaction.
3D User Interfaces
(2005)
Recent studies have shown that through a careful combination of multiple sensory channels, so called multisensory binding effects can be achieved that can be beneficial for collision detection and texture recognition feedback. During the design of a new pen-input device called Tactylus, specific focus was put on exploring multisensory effects of audiotactile cues to create a new, but effective way to interact in virtual environments with the purpose to overcome several of the problems noticed in current devices.
In this paper, we report on four generations of display-sensor platforms for handheld augmented reality. The paper is organized as a compendium of requirements that guided the design and construction of each generation of the handheld platforms. The first generation, reported in [17]), was a result of various studies on ergonomics and human factors. Thereafter, each following iteration in the design-production process was guided by experiences and evaluations that resulted in new guidelines for future versions. We describe the evolution of hardware for handheld augmented reality, the requirements and guidelines that motivated its construction.
Environment monitoring using multiple observation cameras is increasingly popular. Different techniques exist to visualize the incoming video streams, but only few evaluations are available to find the best suitable one for a given task and context. This article compares three techniques for browsing video feeds from cameras that are located around the user in an unstructured manner. The techniques allow mobile users to gain extra information about the surroundings, the objects and the actors in the environment by observing a site from different perspectives. The techniques relate local and remote cameras topologically, via a tunnel, or via bird's eye viewpoint. Their common goal is to enhance spatial awareness of the viewer, without relying on a model or previous knowledge of the environment. We introduce several factors of spatial awareness inherent to multi-camera systems, and present a comparative evaluation of the proposed techniques with respect to spatial understanding and workload.
In diesem Artikel wird darüber berichtet, ob die Glaubwürdigkeit von Avataren als mögliches Modulationskriterium für die virtuelle Expositionstherapie von Agoraphobie in Frage kommt. Dafür werden mehrere Glaubwürdigkeitsstufen für Avatare, die hypothetisch einen Einfluss auf die virtuelle Expositionstherapie von Agoraphobie haben könnten sowie ein potentielles Expositionsszenario entwickelt. Die Arbeit kann innerhalb einer Studie einen signifikanten Einfluss der Glaubwürdigkeitsstufen auf Präsenz, Kopräsenz und Realismus aufzeigen.
The visual and auditory quality of computer-mediated stimuli for virtual and extended reality (VR/XR) is rapidly improving. Still, it remains challenging to provide a fully embodied sensation and awareness of objects surrounding, approaching, or touching us in a 3D environment, though it can greatly aid task performance in a 3D user interface. For example, feedback can provide warning signals for potential collisions (e.g., bumping into an obstacle while navigating) or pinpointing areas where one’s attention should be directed to (e.g., points of interest or danger). These events inform our motor behaviour and are often associated with perception mechanisms associated with our so-called peripersonal and extrapersonal space models that relate our body to object distance, direction, and contact point/impact. We will discuss these references spaces to explain the role of different cues in our motor action responses that underlie 3D interaction tasks. However, providing proximity and collision cues can be challenging. Various full-body vibration systems have been developed that stimulate body parts other than the hands, but can have limitations in their applicability and feasibility due to their cost and effort to operate, as well as hygienic considerations associated with e.g., Covid-19. Informed by results of a prior study using low-frequencies for collision feedback, in this paper we look at an unobtrusive way to provide spatial, proximal and collision cues. Specifically, we assess the potential of foot sole stimulation to provide cues about object direction and relative distance, as well as collision direction and force of impact. Results indicate that in particular vibration-based stimuli could be useful within the frame of peripersonal and extrapersonal space perception that support 3DUI tasks. Current results favor the feedback combination of continuous vibrotactor cues for proximity, and bass-shaker cues for body collision. Results show that users could rather easily judge the different cues at a reasonably high granularity. This granularity may be sufficient to support common navigation tasks in a 3DUI.
Virtual Reality (VR) sickness remains a significant challenge in the widespread adoption of VR technologies. The absence of a standardized benchmark system hinders progress in understanding and effectively countering VR sickness. This paper proposes an initial step towards a benchmark system, utilizing a novel methodological framework to serve as a common platform for evaluating contributing VR sickness factors and mitigation strategies. Our benchmark, grounded in established theories and leveraging existing research, features both small and large environments. In two research studies, we validated our system by demonstrating its capability to (1) quickly, reliably, and controllably induce VR sickness in both environments, followed by a rapid decline post-stimulus, facilitating cost and time-effective within-subject studies and increased statistical power, (2) integrate and evaluate established VR sickness mitigation methods — static and dynamic field of view reduction, blur, and virtual nose — demonstrating their effectiveness in reducing symptoms in the benchmark and their direct comparison within a standardized setting. Our proposed benchmark also enables broader, more comparative research into different technical, setup, and participant variables influencing VR sickness and overall user experience, ultimately paving the way for building a comprehensive database to identify the most effective strategies for specific VR applications.
Large display environments are highly suitable for immersive analytics. They provide enough space for effective co-located collaboration and allow users to immerse themselves in the data. To provide the best setting - in terms of visualization and interaction - for the collaborative analysis of a real-world task, we have to understand the group dynamics during the work on large displays. Among other things, we have to study, what effects different task conditions will have on user behavior.
In this paper, we investigated the effects of task conditions on group behavior regarding collaborative coupling and territoriality during co-located collaboration on a wall-sized display. For that, we designed two tasks: a task that resembles the information foraging loop and a task that resembles the connecting facts activity. Both tasks represent essential sub-processes of the sensemaking process in visual analytics and cause distinct space/display usage conditions. The information foraging activity requires the user to work with individual data elements to look into details. Here, the users predominantly occupy only a small portion of the display. In contrast, the connecting facts activity requires the user to work with the entire information space. Therefore, the user has to overview the entire display.
We observed 12 groups for an average of two hours each and gathered qualitative data and quantitative data. During data analysis, we focused specifically on participants' collaborative coupling and territorial behavior.
We could detect that participants tended to subdivide the task to approach it, in their opinion, in a more effective way, in parallel. We describe the subdivision strategies for both task conditions. We also detected and described multiple user roles, as well as a new coupling style that does not fit in either category: loosely or tightly. Moreover, we could observe a territory type that has not been mentioned previously in research. In our opinion, this territory type can affect the collaboration process of groups with more than two collaborators negatively. Finally, we investigated critical display regions in terms of ergonomics. We could detect that users perceived some regions as less comfortable for long-time work.
Telepresence robots allow users to be spatially and socially present in remote environments. Yet, it can be challenging to remotely operate telepresence robots, especially in dense environments such as academic conferences or workplaces. In this paper, we primarily focus on the effect that a speed control method, which automatically slows the telepresence robot down when getting closer to obstacles, has on user behaviors. In our first user study, participants drove the robot through a static obstacle course with narrow sections. Results indicate that the automatic speed control method significantly decreases the number of collisions. For the second study we designed a more naturalistic, conference-like experimental environment with tasks that require social interaction, and collected subjective responses from the participants when they were asked to navigate through the environment. While about half of the participants preferred automatic speed control because it allowed for smoother and safer navigation, others did not want to be influenced by an automatic mechanism. Overall, the results suggest that automatic speed control simplifies the user interface for telepresence robots in static dense environments, but should be considered as optionally available, especially in situations involving social interactions.
Telepresence robots allow people to participate in remote spaces, yet they can be difficult to manoeuvre with people and obstacles around. We designed a haptic-feedback system called “FeetBack," which users place their feet in when driving a telepresence robot. When the robot approaches people or obstacles, haptic proximity and collision feedback are provided on the respective sides of the feet, helping inform users about events that are hard to notice through the robot’s camera views. We conducted two studies: one to explore the usage of FeetBack in virtual environments, another focused on real environments.We found that FeetBack can increase spatial presence in simple virtual environments. Users valued the feedback to adjust their behaviour in both types of environments, though it was sometimes too frequent or unneeded for certain situations after a period of time. These results point to the value of foot-based haptic feedback for telepresence robot systems, while also the need to design context-sensitive haptic feedback.
Evaluation of a Multi-Layer 2.5D display in comparison to conventional 3D stereoscopic glasses
(2020)
In this paper we propose and evaluate a custom-build projection-based multilayer 2.5D display, consisting of three layers of images, and compare performance to a stereoscopic 3D display. Stereoscopic vision can increase the involvement and enhance game experience, however may induce possible side effects, e.g. motion sickness and simulator sickness. To overcome the disadvantage of multiple discrete depths, in our system perspective rendering and head-tracking is used. A study was performed to evaluate this display with 20 participants playing custom-designed games. The results indicated that the multi-layer display caused fewer side effects than the stereoscopic display and provided good usability. The participants also stated a better or equal spatial perception, while the cognitive load stayed the same.
When navigating larger virtual environments and computer games, natural walking is often unfeasible. Here, we investigate how alternatives such as joystick- or leaning-based locomotion interfaces ("human joystick") can be enhanced by adding walking-related cues following a sensory substitution approach. Using a custom-designed foot haptics system and evaluating it in a multi-part study, we show that adding walking related auditory cues (footstep sounds), visual cues (simulating bobbing head-motions from walking), and vibrotactile cues (via vibrotactile transducers and bass-shakers under participants' feet) could all enhance participants' sensation of self-motion (vection) and involement/presence. These benefits occurred similarly for seated joystick and standing leaning locomotion. Footstep sounds and vibrotactile cues also enhanced participants' self-reported ability to judge self-motion velocities and distances traveled. Compared to seated joystick control, standing leaning enhanced self-motion sensations. Combining standing leaning with a minimal walking-in-place procedure showed no benefits and reduced usability, though. Together, results highlight the potential of incorporating walking-related auditory, visual, and vibrotactile cues for improving user experience and self-motion perception in applications such as virtual reality, gaming, and tele-presence.
Supported by their large size and high resolution, display walls suit well for different collaboration types. However, in order to foster instead of impede collaboration processes, interaction techniques need to be carefully designed, taking into regard the possibilities and limitations of the display size, and their effects on human perception and performance. In this paper we investigate the impact of visual distractors (which, for instance, might be caused by other collaborators' input) in peripheral vision on short-term memory and attention. The distractors occur frequently when multiple users collaborate in large wall display systems and may draw attention away from the main task, as such potentially affecting performance and cognitive load. Yet, the effect of these distractors is hardly understood. Gaining a better understanding thus may provide valuable input for designing more effective user interfaces. In this article, we report on two interrelated studies that investigated the effect of distractors. Depending on when the distractor is inserted in the task performance sequence, as well as the location of the distractor, user performance can be disturbed: we will show that distractors may not affect short term memory, but do have an effect on attention. We will closely look into the effects, and identify future directions to design more effective interfaces.
This paper introduces FaceHaptics, a novel haptic display based on a robot arm attached to a head-mounted virtual reality display. It provides localized, multi-directional and movable haptic cues in the form of wind, warmth, moving and single-point touch events and water spray to dedicated parts of the face not covered by the head-mounted display.The easily extensible system, however, can principally mount any type of compact haptic actuator or object. User study 1 showed that users appreciate the directional resolution of cues, and can judge wind direction well, especially when they move their head and wind direction is adjusted dynamically to compensate for head rotations. Study 2 showed that adding FaceHaptics cues to a VR walkthrough can significantly improve user experience, presence, and emotional responses.
Large, high-resolution displays demonstrated their effectiveness in lab settings for cognitively demanding tasks in single user and collaborative scenarios. The effectiveness is mostly reached through inherent displays' properties - large display real estate and high resolution - that allow for visualization of complex datasets, and support of group work and embodied interaction. To raise users' efficiency, however, more sophisticated user support in the form of advanced user interfaces might be needed. For that we need profound understanding of how large, tiled displays impact users work and behavior. We need to extract behavioral patterns for different tasks and data types. This paper reports on study results of how users, while working collaboratively, process spatially fixed items on large, tiled displays. The results revealed a recurrent pattern showing that users prefer to process documents column wise rather than row wise or erratic.
Comparing Non-Visual and Visual Guidance Methods for Narrow Field of View Augmented Reality Displays
(2020)
In presence of conflicting or ambiguous visual cues in complex scenes, performing 3D selection and manipulation tasks can be challenging. To improve motor planning and coordination, we explore audio-tactile cues to inform the user about the presence of objects in hand proximity, e.g., to avoid unwanted object penetrations. We do so through a novel glove-based tactile interface, enhanced by audio cues. Through two user studies, we illustrate that proximity guidance cues improve spatial awareness, hand motions, and collision avoidance behaviors, and show how proximity cues in combination with collision and friction cues can significantly improve performance.
We present a novel, multilayer interaction approach that enables state transitions between spatially above-screen and 2D on-screen feedback layers. This approach supports the exploration of haptic features that are hard to simulate using rigid 2D screens. We accomplish this by adding a haptic layer above the screen that can be actuated and interacted with (pressed on) while the user interacts with on-screen content using pen input. The haptic layer provides variable firmness and contour feedback, while its membrane functionality affords additional tactile cues like texture feedback. Through two user studies, we look at how users can use the layer in haptic exploration tasks, showing that users can discriminate well between different firmness levels, and can perceive object contour characteristics. Demonstrated also through an art application, the results show the potential of multilayer feedback to extend on-screen feedback with additional widget, tool and surface properties, and for user guidance.
We present a novel forearm-and-glove tactile interface that can enhance 3D interaction by guiding hand motor planning and coordination. In particular, we aim to improve hand motion and pose actions related to selection and manipulation tasks. Through our user studies, we illustrate how tactile patterns can guide the user, by triggering hand pose and motion changes, for example to grasp (select) and manipulate (move) an object. We discuss the potential and limitations of the interface, and outline future work.