Refine
H-BRS Bibliography
- yes (9)
Departments, institutes and facilities
Document Type
- Article (5)
- Conference Object (4)
Language
- English (9)
Keywords
- 3D User Interface (1)
- 3D user interface (1)
- Augmented Reality (1)
- Hand Guidance (1)
- Multi-Modal Interaction (1)
- Navigation (1)
- Performance (1)
- TATP (1)
- Tactile Feedback (1)
- Tactile feedback (1)
Detection of triacetone triperoxide using temperature cycled metal-oxide semiconductor gas sensors
(2015)
Comparing Non-Visual and Visual Guidance Methods for Narrow Field of View Augmented Reality Displays
(2020)
In presence of conflicting or ambiguous visual cues in complex scenes, performing 3D selection and manipulation tasks can be challenging. To improve motor planning and coordination, we explore audio-tactile cues to inform the user about the presence of objects in hand proximity, e.g., to avoid unwanted object penetrations. We do so through a novel glove-based tactile interface, enhanced by audio cues. Through two user studies, we illustrate that proximity guidance cues improve spatial awareness, hand motions, and collision avoidance behaviors, and show how proximity cues in combination with collision and friction cues can significantly improve performance.
We present a novel forearm-and-glove tactile interface that can enhance 3D interaction by guiding hand motor planning and coordination. In particular, we aim to improve hand motion and pose actions related to selection and manipulation tasks. Through our user studies, we illustrate how tactile patterns can guide the user, by triggering hand pose and motion changes, for example to grasp (select) and manipulate (move) an object. We discuss the potential and limitations of the interface, and outline future work.
It is challenging to provide users with a haptic weight sensation of virtual objects in VR since current consumer VR controllers and software-based approaches such as pseudo-haptics cannot render appropriate haptic stimuli. To overcome these limitations, we developed a haptic VR controller named Triggermuscle that adjusts its trigger resistance according to the weight of a virtual object. Therefore, users need to adapt their index finger force to grab objects of different virtual weights. Dynamic and continuous adjustment is enabled by a spring mechanism inside the casing of an HTC Vive controller. In two user studies, we explored the effect on weight perception and found large differences between participants for sensing change in trigger resistance and thus for discriminating virtual weights. The variations were easily distinguished and associated with weight by some participants while others did not notice them at all. We discuss possible limitations, confounding factors, how to overcome them in future research and the pros and cons of this novel technology.
In this work, the surface reactions of the homemade explosive triacetone triperoxide on tungsten oxide (WO3) sensor surfaces are studied to obtain detailed information about the chemical reactions taking place. Semiconductor gas sensors based on WO3 nanopowders are therefore produced and characterized by scanning electron microscopy, X-ray diffraction, and Raman spectroscopy. To analyze the reaction mechanisms at the sensor surface, the sensor is monitored online under operation conditions using Raman spectroscopy, which allows to identify the temperature-dependent sensor reactions. By combining information from the Raman spectra with data on the changing resistivity of the underlying semiconductor, it is possible to establish a correlation between the adsorbed gas species and the physical properties of the WO3 layer. In the results, it is indicated that a Lewis acid–base reaction is the most likely mechanism for the increase in resistance observed at temperatures below 150 °C. In the results, at higher temperatures, the assumption of a radical mechanism that causes a decrease in resistance is supported.