Refine
Departments, institutes and facilities
Document Type
- Article (16)
- Contribution to a Periodical (1)
Year of publication
Keywords
When optimizing the process parameters of the acidic ethanolic organosolv process, the aim is usually to maximize the delignification and/or lignin purity. However, process parameters such as temperature, time, ethanol and catalyst concentration, respectively, can also be used to vary the structural properties of the obtained organosolv lignin, including the molecular weight and the ratio of aliphatic versus phenolic hydroxyl groups, among others. This review particularly focuses on these influencing factors and establishes a trend analysis between the variation of the process parameters and the effect on lignin structure. Especially when larger data sets are available, as for process temperature and time, correlations between the distribution of depolymerization and condensation reactions are found, which allow direct conclusions on the proportion of lignin's structural features, independent of the diversity of the biomass used. The newfound insights gained from this review can be used to tailor organosolv lignins isolated for a specific application.
Nitrosamines have been identified as a probable human carcinogen and thus are of high concern in many manufacturing industries and various matrices (for example pharmaceutical, cosmetic and food products, workplace air or potable- and wastewater). This study aims to analyse nine nitrosamines relevant in the field of occupational safety using a gas chromatography-drift tube ion mobility spectrometry (GC-DT-IMS) system. To do this, single nitrosamine standards as well as a standard mix, each at 0.1 g/L, were introduced via liquid injection. A GC-DT-IMS method capable of separating the nitrosamine signals according to retention time (first dimension) and drift time (second dimension) in 10 min was developed. The system shows excellent selectivity as each nitrosamine gives two signals pertaining to monomer and dimer in the second dimension. For the first time, reduced ion mobility values for nitrosamines were determined, ranging from 1.18 to 2.03 cm2s−1V−1. The high selectivity of the GC-DT-IMS method could provide a definite advantage for monitoring nitrosamines in different manufacturing industries and consumer products.