Refine
H-BRS Bibliography
- yes (40)
Departments, institutes and facilities
- Fachbereich Informatik (37)
- Institut für Sicherheitsforschung (ISF) (30)
- Fachbereich Ingenieurwissenschaften und Kommunikation (6)
- Institut für Technik, Ressourcenschonung und Energieeffizienz (TREE) (4)
- Fachbereich Angewandte Naturwissenschaften (2)
- Institute of Visual Computing (IVC) (2)
- Institut für Detektionstechnologien (IDT) (1)
Document Type
- Conference Object (19)
- Article (13)
- Patent (3)
- Report (3)
- Part of a Book (2)
Year of publication
Keywords
- Skin detection (2)
- automated sensor-screening (2)
- biometrics (2)
- machine learning (2)
- optical sensor (2)
- semiconducting metal oxide gas sensor array (2)
- Circular saws (1)
- Collaborating industrial robots (1)
- Cybersecurity (1)
- Embedded system (1)
In the presented project, new approaches for the prevention of hand movements leading to hazards and for non-contact detection of fingers are intended to permit comprehensive and economical protection on circular saws. The basic principles may also be applied to other machines with manual loading and/or unloading. Two new detection principles are explained. The first is the distinction between skin and wood or other material by spectral analysis in the near infrared region. Using LED and photodiodes it is possible to detect fingers and hands reliable. With a kind of light curtain the intrusion into the dangerous zone near the blade can be prevented. The second principle is video image processing to detect persons, arms and fingers. In the first stage of development the detection of upper limb extremities within a defined hazard area by means of a computer based video image analysis is investigated.
Vorrichtung zur Authentifikation einer Person anhand mindestens eines biometrischen Parameters
(2008)
Die Vorrichtung zur Authentifikation einer Person anhand mindestens eines biometrischen Parameters, insbesondere anhand eines Fingerabdrucks, ist versehen mit einem Biometrie-Detektor (20) zur Detektion eines biometrischen Parameters, einem Haut-Detektor (24) zur berührungslosen Erkennung lebender menschlicher Haut innerhalb eines Erfassungsbereichs. Der Haut-Detektor (24) weist mindestens eine Gruppe aus mindestens einer Strahlungseinheit (26, 28) und mindestens einer Empfangseinheit (30) auf. Die mindestens eine Strahlungseinheit (26, 28) gibt in Richtung auf den Erfassungsbereich Strahlung bei mindestens zwei unterschiedlichen Wellenlängen im Wellenlängenbereich zwischen 400 nm und 1500 nm ab, wobei mindestens eine der Wellenlängen (26, 28) im Wellenlängenbereich von 900 nm bis 1500 nm liegt und die mindestens eine Empfangseinheit (30) aus dem Erfassungsbereich reflektierte Strahlung empfängt. Ferner ist die Vorrichtung versehen mit einer mit dem Biometer-Detektor (20) und dem Haut-Detektor (24) verbundenen Signalauswerteeinheit (22) zur Auswertung der Intensität der von der Empfangseinheit (30) empfangenen reflektierten Strahlungen der Strahlungseinheit (26, 28). In der Signalauswerteeinheit (22) ist anhand der Intensitäten der von der Empfangseinheit (30) empfangenen reflektierten Strahlungen der Strahlungseinheit (26, 28) bei den zwei unterschiedlichen Wellenlängen ermittelbar, ob der Haut-Detektor lebende menschliche Haut erkennt.
Mobile Datenkommunikation basiert üblicherweise auf der drahtlosen Anbindung eines Endgerätes an eine Basisstation, die ihrerseits an eine feste Infrastruktur angebunden ist. In vielen Szenarien sind diese Voraussetzungen jedoch nicht gegeben. Beispiele hierfür sind Katastrophen wie Hochwasser, Erdbeben oder Flugzeugabstürze in dünn besiedelten Regionen. Einen Lösungsansatz für sich daraus ergebende Anforderungen bieten dynamisch aufgebaute Ad-Hoc Netze mit einer satellitengestützten Anbindung an eine Festnetz-Infrastruktur. In solchen Netzen stellen die mobilen Terminals die benötigte lokale Infrastruktur selbst dynamisch her. Ziel der hier vorgestellten Arbeiten ist es, die Zuverlässigkeit und Dienstqualität der verwendeten Technologien zu untersuchen und durch geeignete Mechanismen so anzupassen, dass die Anforderungen typischer Applikationen möglichst erfüllt werden. Zur Demonstration wurde ein Prototyp aufgebaut, der unter anderem die Anwendungen "Voice over IP" (VoIP), "Datenbankzugriff im Intranet" und "Internetzugang" (WWW) untersucht.
In the presented project, a new approach for the prevention of hand movements leading to hazards and for non-contact detection of fingers is intended to permit comprehensive and economical protection on circular saws. The basic principles may also be applied to other machines with manual loading and / or unloading. With an automatic blade guard an improved integration of the protection system can be achieved. In addition a new detection principle is explained. The distinction between skin and wood or other material is achieved by a dedicated spectral analysis in the near infrared region. Using LED and photodiodes it is possible to detect fingers and hands reliably. With a kind of light curtain the intrusion of hands or fingers into the dangerous zone near the blade guard can be prevented.
This paper presents recent research on an active multispectral scanning sensor capable of classifying an object's surface material in order to distinguish between different kinds of materials and human skin. The sensor itself has already been presented in previous work and can be used in conjunction with safeguarding equipment at manually-fed machines or robot workplaces, for example. This work shows how an extended sensor system with advanced material classifiers can be used to provide additional value by distinguishing different materials of work pieces in order to suggest different tools or parameters for the machine (e.g. the use of a different saw blade or rotation speed at table saws). Additionally, a first implementation and evaluation of an active multispectral camera system addressing new safety applications is described. Both approaches intend to increase the productivity and the user's acceptance of the sensor technology.
Design of an Active Multispectral SWIR Camera System for Skin Detection and Face Verification
(2016)
Biometric face recognition is becoming more frequently used in different application scenarios. However, spoofing attacks with facial disguises are still a serious problem for state of the art face recognition algorithms. This work proposes an approach to face verification based on spectral signatures of material surfaces in the short wave infrared (SWIR) range. They allow distinguishing authentic human skin reliably from other materials, independent of the skin type. We present the design of an active SWIR imaging system that acquires four-band multispectral image stacks in real-time. The system uses pulsed small band illumination, which allows for fast image acquisition and high spectral resolution and renders it widely independent of ambient light. After extracting the spectral signatures from the acquired images, detected faces can be verified or rejected by classifying the material as "skin" or "no-skin". The approach is extensively evaluated with respect to both acquisition and classification performance. In addition, we present a database containing RGB and multispectral SWIR face images, as well as spectrometer measurements of a variety of subjects, which is used to evaluate our approach and will be made available to the research community by the time this work is published.
In this paper, we introduce an optical sensor system, which is integrated into an industrial push-button. The sensor allows to classify the type of material that is in contact with the button when pressed into different material categories on the basis of the material's so called "spectral signature". An approach for a safety sensor system at circular table saws on the same base has been introduced previously on SIAS-2007. This contactless working sensor is able to distinguish reliably between skin, textiles, leather and various other kinds of materials. A typical application for this intelligent push-button is the use at possibly dangerous machines, whose operating instructions include either the prohibition or the obligation to wear gloves during the work at the machine. An exemple of machines at which no gloves are allowed are pillar drilling machines, because of the risk of getting caught in the drill chuck and being turned in by the machine. In many cases this causes very serious hand injuries. Depending on the application needs, the sensor system integrated into the push-button can be configured flexibly by software to prevent the operator from accidentally starting a machine with or without gloves, which can decrease the risk of severe accidents significantly. Especially two-hand controls are incentive to manipulation for easier handling. By equipping both push-buttons of a two-hand control with material classification properties, the user is forced to operate the controls with his bare fingers. That limitation disallows the manipulation of a two-hand control by a simple rodding device.
The device (10) has a handrail (18) provided with an optical contactless monitoring device formed as an active sensor system, where the monitoring device is arranged in a region of a guide (14) of the handrail at a front base (16) of an escalator (12) or a moving pavement. The monitoring device has two transmission paths (28, 30) with wavelength bands that are different from each other, where one of the paths includes the handrail. Ratio or difference between signals of the paths is used for recognizing foreign bodies e.g. hands of adults and children.
Microcontroller-based sensor systems offer great opportunities for the implementation of safety features for potentially dangerous machinery. However, in general they are difficult to assess with regard to their reliability and failure rate. This paper describes the safety assessment of hardware and software of a new and innovative sensor system. The hardware is assessed by standardized methods according to norm EN ISO 13849-1, while the use of model checking is presented as an approach to solve the problem of validating the software.
At previous SIAS conferences, we presented a novel opto-electronic safety sensor system for skin detection at circular saws jointly developed with the Institute for Occupational Safety and Health of the German Social Accident Insurance (IFA). This work now presents the development results of our consecutive research on a prototype of a sensor system for more general production machine applications including robot workplaces. The system uses offthe shelf LEDs and photodiodes in combination with dedicated optics and a microcontroller system to implement a so-called spectral light curtain.
The proper use of protective hoods on panel saws should reliably prevent severe injuries from (hand) contact with the blade or material kickbacks. It also should minimize long-term lung damages from fine-particle pollution. To achieve both purposes the hood must be adjusted properly by the operator for each workpiece to fit its height. After a work process is finished, the hood must be lowered down completely to the bench. Unfortunately, in practice the protective hood is fixed at a high position for most of the work time and herein loses its safety features. A system for an automatic height adjustment of the hood would increase comfort and safety. If the system can distinguish between workpieces and skin reliably, it furthermore will reduce occupational hazards for panel saw users. A functional demonstrator of such a system has been designed and implemented to show the feasibility of this approach. A specific optical sensor system is used to observe a point on the extended cut axis in front of the blade. The sensor determines the surface material reliably and measures the distance to the workpiece surface simultaneously. If the distance changes because of a workpiece fed to the machine, the control unit will set the motor-adjusted hood to the correct height. If the sensor detects skin, the hood will not be moved. In addition a camera observes the area under the hood. If there are no workpieces or offcuts left under the hood, it will be lowered back to the default position.
Persons entering the working range of industrial robots are exposed to a high risk of collision with moving parts of the system, potentially causing severe injuries. Conventional systems, which restrict the access to this area, range from walls and fences to light barriers and other vision based protective devices (VBPD). None of these systems allow to distinguish between humans and workpieces in a safe and reliable manner. In this work, a new approach is investigated, which uses an active near-infrared (NIR) camera system with advanced capabilities of skin detection to distinguish humans from workpieces based on characteristic spectral signatures. This approach allows to implement more intelligent muting processes and at the same time increases the safety of persons working close to the robots. The conceptual integration of such a camera system into a VBPD and the enhancement of person detection methods through skin detection are described and evaluated in this paper. Based upon this work, next steps could be the development of multimodal sensor systems to safeguard working ranges of collaborating robots using the described camera system.
Diese Arbeit präsentiert eine Methode zur zuverlässigen Personendetektion für die Absicherung des Arbeitsbereichs von Industrierobotern. Hierzu wird ein im Nahinfrarotbereich (NIR) arbeitendes aktives Kamerasystem eingesetzt, das durch erweiterte und robuste Hauterkennungseigenschaften besonders dazu geeignet ist, zwischen verschiedensten Materialoberflächen und menschlicher Haut zu unterscheiden. So soll zum einen die Erkennungsleistung gegenüber handelsüblichen, im visuellen Bereich arbeitenden RGB-Kamerasystemen gesteigert werden und gleichzeitig eine „intelligente“ Form des Mutings realisiert werden. Die im Rahmen des Projekts „Sichere Personendetektion im Arbeitsbereich von Industrierobotern durch ein aktives NIR-Kamerasystem (SPAI)“ entwickelte und hier vorgestellte Methode erreicht in einer ersten Variante eine pixelweise Personenerkennungsrate von ca. 98,16%.
Robust Identification and Segmentation of the Outer Skin Layers in Volumetric Fingerprint Data
(2022)
Despite the long history of fingerprint biometrics and its use to authenticate individuals, there are still some unsolved challenges with fingerprint acquisition and presentation attack detection (PAD). Currently available commercial fingerprint capture devices struggle with non-ideal skin conditions, including soft skin in infants. They are also susceptible to presentation attacks, which limits their applicability in unsupervised scenarios such as border control. Optical coherence tomography (OCT) could be a promising solution to these problems. In this work, we propose a digital signal processing chain for segmenting two complementary fingerprints from the same OCT fingertip scan: One fingerprint is captured as usual from the epidermis (“outer fingerprint”), whereas the other is taken from inside the skin, at the junction between the epidermis and the underlying dermis (“inner fingerprint”). The resulting 3D fingerprints are then converted to a conventional 2D grayscale representation from which minutiae points can be extracted using existing methods. Our approach is device-independent and has been proven to work with two different time domain OCT scanners. Using efficient GPGPU computing, it took less than a second to process an entire gigabyte of OCT data. To validate the results, we captured OCT fingerprints of 130 individual fingers and compared them with conventional 2D fingerprints of the same fingers. We found that both the outer and inner OCT fingerprints were backward compatible with conventional 2D fingerprints, with the inner fingerprint generally being less damaged and, therefore, more reliable.
Due to their user-friendliness and reliability, biometric systems have taken a central role in everyday digital identity management for all kinds of private, financial and governmental applications with increasing security requirements. A central security aspect of unsupervised biometric authentication systems is the presentation attack detection (PAD) mechanism, which defines the robustness to fake or altered biometric features. Artifacts like photos, artificial fingers, face masks and fake iris contact lenses are a general security threat for all biometric modalities. The Biometric Evaluation Center of the Institute of Safety and Security Research (ISF) at the University of Applied Sciences Bonn-Rhein-Sieg has specialized in the development of a near-infrared (NIR)-based contact-less detection technology that can distinguish between human skin and most artifact materials. This technology is highly adaptable and has already been successfully integrated into fingerprint scanners, face recognition devices and hand vein scanners. In this work, we introduce a cutting-edge, miniaturized near-infrared presentation attack detection (NIR-PAD) device. It includes an innovative signal processing chain and an integrated distance measurement feature to boost both reliability and resilience. We detail the device’s modular configuration and conceptual decisions, highlighting its suitability as a versatile platform for sensor fusion and seamless integration into future biometric systems. This paper elucidates the technological foundations and conceptual framework of the NIR-PAD reference platform, alongside an exploration of its potential applications and prospective enhancements.
Biometric authentication plays a vital role in various everyday applications with increasing demands for reliability and security. However, the use of real biometric data for research raises privacy concerns and data scarcity issues. A promising approach using synthetic biometric data to address the resulting unbalanced representation and bias, as well as the limited availability of diverse datasets for the development and evaluation of biometric systems, has emerged. Methods for a parameterized generation of highly realistic synthetic data are emerging and the necessary quality metrics to prove that synthetic data can compare to real data are open research tasks. The generation of 3D synthetic face data using game engines’ capabilities of generating varied realistic virtual characters is explored as a possible alternative for generating synthetic face data while maintaining reproducibility and ground truth, as opposed to other creation methods. While synthetic data offer several benefits, including improved resilience against data privacy concerns, the limitations and challenges associated with their usage are addressed. Our work shows concurrent behavior in comparing semi-synthetic data as a digital representation of a real identity with their real datasets. Despite slight asymmetrical performance in comparison with a larger database of real samples, a promising performance in face data authentication is shown, which lays the foundation for further investigations with digital avatars and the creation and analysis of fully synthetic data. Future directions for improving synthetic biometric data generation and their impact on advancing biometrics research are discussed.
Entering the work envelope of an industrial robot can lead to severe injury from collisions with moving parts of the system. Conventional safety mechanisms therefore mostly restrict access to the robot using physical barriers such as walls and fences or non-contact protective devices including light curtains and laser scanners. As none of these mechanisms applies to human-robot-collaboration (HRC), a concept in which human and machine complement one another by working hand in hand, there is a rising need for safe and reliable detection of human body parts amidst background clutter. For this application camera-based systems are typically well suited. Still, safety concerns remain, owing to possible detection failures caused by environmental occlusion, extraneous light or other adverse imaging conditions. While ultrasonic proximity sensing can provide physical diversity to the system, it does not yet allow to reliably distinguish relevant objects from background objects.This work investigates a new approach to detecting relevant objects and human body parts based on acoustic holography. The approach is experimentally validated using a low-cost application-specific ultrasonic sensor system created from micro-electromechanical systems (MEMS). The presented results show that this system far outperforms conventional proximity sensors in terms of lateral imaging resolution and thus allows for more intelligent muting processes without compromising the safety of people working close to the robot. Based upon this work, a next step could be the development of a multimodal sensor systems to safeguard workers who collaborate with robots using the described ultrasonic sensor system.
The need for innovation around the control functions of inverters is great. PV inverters were initially expected to be passive followers of the grid and to disconnect as soon as abnormal conditions happened. Since future power systems will be dominated by generation and storage resources interfaced through inverters these converters must move from following to forming and sustaining the grid. As “digital natives” PV inverters can also play an important role in the digitalisation of distribution networks. In this short review we identified a large potential to make the PV inverter the smart local hub in a distributed energy system. At the micro level, costs and coordination can be improved with bidirectional inverters between the AC grid and PV production, stationary storage, car chargers and DC loads. At the macro level the distributed nature of PV generation means that the same devices will support both to the local distribution network and to the global stability of the grid. Much success has been obtained in the former. The later remains a challenge, in particular in terms of scaling. Yet there is some urgency in researching and demonstrating such solutions. And while digitalisation offers promise in all control aspects it also raises significant cybersecurity concerns.
Kollaborative Industrieroboter werden für produzierende Unternehmen immer kosteneffizienter. Während diese Systeme für den menschlichen Mitarbeiter eine große Hilfe sein können, stellen sie gleichzeitig ein ernstes Gesundheitsrisiko dar, wenn die zwingend notwendigen Sicherheitsmaßnahmen nur unzureichend umgesetzt werden. Herkömmliche Sicherheitseinrichtungen wie Zäune oder Lichtvorhänge bieten einen guten Schutz, aber solch statische Schutzvorrichtungen sind in neuen, hochdynamischen Arbeitsszenarien problematisch.
Im Forschungsprojekt BeyondSPAI wurde ein Funktionsmuster eines Multisensorsystems zur Absicherung solcher dynamischer Arbeitsszenarien entworfen, implementiert und im Feld getestet. Kern des Systems ist eine robuste optische Materialklassifikation, die mit Hilfe eines intelligenten InGaAs-Kamerasystems Haut von anderen typischen Werkstückoberflächen (z.B. Holz, Metalle od. Kunststoffe) unterscheiden kann. Diese einzigartige Eigenschaft wird genutzt, um menschliche Mitarbeiter zuverlässig zu erkennen, so dass ein konventioneller Roboter in Folge als personenbewusster Cobot arbeiten kann.
Das System ist modular und kann leicht mit weiteren Sensoren verschiedenster Art erweitert werden. Es kann an verschiedene Marken von Industrierobotern angepasst werden und lässt sich schnell an bestehenden Robotersystemen integrieren. Die vier vom System bereitgestellten Sicherheitsausgänge können dazu verwendet werden - abhängig von der durchdrungenen Überwachungszone - entweder eine Warnung auszugeben, die Bewegung des Roboters auf eine sichere Geschwindigkeit zu verlangsamen, oder den Roboter sicher anzuhalten. Sobald alle Zonen wieder als „eindeutig frei von Personen“ identifiziert sind, kann der Roboter wieder beschleunigen, seine ursprüngliche Bewegung wiederaufnehmen und die Arbeit fortsetzen.
The choice of suitable semiconducting metal oxide (MOX) gas sensors for the detection of a specific gas or gas mixture is time-consuming since the sensor’s sensitivity needs to be characterized at multiple temperatures to find its optimal operating conditions. To obtain reliable measurement results, it is very important that the power for the sensor’s integrated heater is stable, regulated and error-free (or error-tolerant). Especially the error-free requirement can be only be achieved if the power supply implements failure-avoiding and failure-detection methods. The biggest challenge is deriving multiple different voltages from a common supply in an efficient way while keeping the system as small and lightweight as possible. This work presents a reliable, compact, embedded system that addresses the power supply requirements for fully automated simultaneous sensor characterization for up to 16 sensors at multiple temperatures. The system implements efficient (avg. 83.3% efficiency) voltage conversion with low ripple output (<32 mV) and supports static or temperature-cycled heating modes. Voltage and current of each channel are constantly monitored and regulated to guarantee reliable operation. To evaluate the proposed design, 16 sensors were screened. The results are shown in the experimental part of this work.
The following work presents algorithms for semi-automatic validation, feature extraction and ranking of time series measurements acquired from MOX gas sensors. Semi-automatic measurement validation is accomplished by extending established curve similarity algorithms with a slope-based signature calculation. Furthermore, a feature-based ranking metric is introduced. It allows for individual prioritization of each feature and can be used to find the best performing sensors regarding multiple research questions. Finally, the functionality of the algorithms, as well as the developed software suite, are demonstrated with an exemplary scenario, illustrating how to find the most power-efficient MOX gas sensor in a data set collected during an extensive screening consisting of 16,320 measurements, all taken with different sensors at various temperatures and analytes.
The simultaneous operation of multiple different semiconducting metal oxide (MOX) gas sensors is demanding for the readout circuitry. The challenge results from the strongly varying signal intensities of the various sensor types to the target gas. While some sensors change their resistance only slightly, other types can react with a resistive change over a range of several decades. Therefore, a suitable readout circuit has to be able to capture all these resistive variations, requiring it to have a very large dynamic range. This work presents a compact embedded system that provides a full, high range input interface (readout and heater management) for MOX sensor operation. The system is modular and consists of a central mainboard that holds up to eight sensor-modules, each capable of supporting up to two MOX sensors, therefore supporting a total maximum of 16 different sensors. Its wide input range is archived using the resistance-to-time measurement method. The system is solely built with commercial off-the-shelf components and tested over a range spanning from 100Ω to 5 GΩ (9.7 decades) with an average measurement error of 0.27% and a maximum error of 2.11%. The heater management uses a well-tested power-circuit and supports multiple modes of operation, hence enabling the system to be used in highly automated measurement applications. The experimental part of this work presents the results of an exemplary screening of 16 sensors, which was performed to evaluate the system’s performance.